Publications by authors named "Giuseppe Falci"

Quantum control techniques are one of the most efficient tools for attaining high-fidelity quantum operations and a convenient approach for quantum sensing and quantum noise spectroscopy. In this work, we investigate dynamical decoupling while processing an entangling two-qubit gate based on an Ising-xx interaction, each qubit affected by pure dephasing classical correlated 1/f-noises. To evaluate the gate error, we used the Magnus expansion introducing generalized filter functions that describe decoupling while processing and allow us to derive an approximate analytic expression as a hierarchy of nested integrals of noise cumulants.

View Article and Find Full Text PDF

Quantum state processing is one of the main tools of quantum technologies. While real systems are complicated and/or may be driven by non-ideal control, they may nevertheless exhibit simple dynamics approximately confined to a low-energy Hilbert subspace. Adiabatic elimination is the simplest approximation scheme allowing us to derive in certain cases an effective Hamiltonian operating in a low-dimensional Hilbert subspace.

View Article and Find Full Text PDF

The coherent nonlinear process where a single photon simultaneously excites two or more two-level systems (qubits) in a single-mode resonator has recently been theoretically predicted. Here we explore the case where the two qubits are placed in different resonators in an array of two or three weakly coupled resonators. Investigating different setups and excitation schemes, we show that this process can still occur with a probability approaching one under specific conditions.

View Article and Find Full Text PDF

A computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external forces (e.

View Article and Find Full Text PDF

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand.

View Article and Find Full Text PDF

We consider the transfer of quantum information down a single-mode quantum transmission line. Such a quantum channel is modeled as a damped harmonic oscillator, the interaction between the information carriers -a train of N qubits- and the oscillator being of the Jaynes-Cummings kind. Memory effects appear if the state of the oscillator is not reset after each channel use.

View Article and Find Full Text PDF