α7 Nicotinic acetylcholine receptors (α7 nAChR) represent promising therapeutic candidates for the treatment of cognitive impairment associated with Alzheimer's disease (AD) and schizophrenia. A medicinal chemistry effort around previously reported compound 1 (SEN15924, WAY-361789) led to the identification of 12 (SEN78702, WYE-308775) a potent and selective full agonist of the α7 nAChR that demonstrated improved plasma stability, brain levels, and efficacy in behavioral cognition models.
View Article and Find Full Text PDFAlpha-7 nicotinic acetylcholine receptors (α7 nAChR) are implicated in the modulation of many cognitive functions such as attention, working memory, and episodic memory. For this reason, α7 nAChR agonists represent promising therapeutic candidates for the treatment of cognitive impairment associated with Alzheimer's disease (AD) and schizophrenia. A medicinal chemistry effort, around our previously reported chemical series, permitted the discovery of a novel class of α7 nAChR agonists with improved selectivity, in particular against the α3 receptor subtype and better ADME profile.
View Article and Find Full Text PDFJ Med Chem
June 2010
Alpha-7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment. We report a series of novel, potent small molecule agonists (4-18) of the alpha7 nAChR deriving from our continuing efforts in the areas of Alzheimer's disease and schizophrenia. One of the compounds of the series containing a urea moiety (16) was further shown to be a selective agonist of the alpha7 nAChR with excellent in vitro and in vivo profiles, brain penetration, and oral bioavailability and demonstrated in vivo efficacy in multiple behavioral cognition models.
View Article and Find Full Text PDFSodium (Na) channels continue to represent an important target for the development of novel anticonvulsants. We have synthesized and evaluated a series of 2,4(5)-diarylimidazoles for inhibition of the human neuronal Na(V)1.2 Na channel isoform.
View Article and Find Full Text PDFA small family of novel 2,4(5)-diarylimidazoles were prepared through a simple and efficient synthesis and evaluated as potential inhibitors of hNa(v)1.2 sodium channel currents. One member of this series (4) exhibited profound inhibition of Na(v)1.
View Article and Find Full Text PDFA parallel synthesis of aryl azoles with neuroprotective activity is described. All compounds obtained were evaluated in an in vitro assay using a NMDA toxicity paradigm showing a neuroprotective activity between 15% and 40%. The potential biological target of the active compounds was investigated by extensive literature searches based around similar scaffolds with reported neuroprotective activity.
View Article and Find Full Text PDFA simple and efficient approach to selectively obtain 2,4(5)-diarylimidazoles suppressing formation of 2-aroyl-4(5)-arylimidazoles is described. The yield of each of the two products strongly depends on the reaction conditions employed. This reaction provides a simple method to prepare small libraries of biologically active compounds by parallel synthesis.
View Article and Find Full Text PDFA novel series of non-imidazole H(3)-receptor antagonists was developed, by chemical modification of a potent lead H(3)-antagonist composed by an imidazole ring connected through an alkyl spacer to a 2-aminobenzimidazole moiety (e.g., 2-[[3-[4(5)-imidazolyl]propyl]amino]benzimidazole), previously reported by our research group.
View Article and Find Full Text PDF