This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices.
View Article and Find Full Text PDFPurpose: Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET).
Materials And Methods: The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.
Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).
View Article and Find Full Text PDFProton beam therapy is considered a step forward with respect to electromagnetic radiation, thanks to the reduction in the dose delivered. Among unwanted effects to healthy tissue, cardiovascular complications are a known long-term radiotherapy complication. The transcriptional response of cardiac tissue from xenografted BALB/c nude mice obtained at 3 and 10 days after proton irradiation covering both the tumor region and the underlying healthy tissue was analyzed as a function of dose and time.
View Article and Find Full Text PDFBackground: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces.
View Article and Find Full Text PDF. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field.
View Article and Find Full Text PDFDespite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients.
View Article and Find Full Text PDFIn this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material.
View Article and Find Full Text PDFBackground: There is currently significant interest in assessing the role of oxygen in the radiobiological effects at ultra-high dose rates. Oxygen modulation is postulated to play a role in the enhanced sparing effect observed in FLASH radiotherapy, where particles are delivered at 40-1000 Gy/s. Furthermore, the development of laser-driven accelerators now enables radiobiology experiments in extreme regimes where dose rates can exceed 10 Gy/s, and predicted oxygen depletion effects on cellular response can be tested.
View Article and Find Full Text PDFClinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range.
View Article and Find Full Text PDFProtontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and B atoms, i.
View Article and Find Full Text PDFIn Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.
View Article and Find Full Text PDFPurpose: A 5 and 10 μm thin silicon on insulator (SOI) 3D mushroom microdosimeter was used to characterize both the in-field and out-of-field of a 62 MeV proton beam.
Methods: The SOI mushroom microdosimeter consisted of an array of cylindrical sensitive volumes (SVs), developed by the Centre for Medical Radiation Physics, University of Wollongong, was irradiated with 62 MeV protons at the CATANA (Centro di AdroTerapia Applicazioni Nucleari Avanzate) facility in Catania, Italy, a facility dedicated to the radiation treatment of ocular melanomas. Dose mean lineal energy, ( ), values were obtained at various depths in PMMA along a pristine and spread out Bragg peak (SOBP).
Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC.
View Article and Find Full Text PDFInt J Mol Sci
July 2020
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83.
View Article and Find Full Text PDFThe purpose of this paper is to characterize the skin deterministic damage due to the effect of proton beam irradiation in mice occurred during a long-term observational experiment. This study was initially defined to evaluate the insurgence of myelopathy irradiating spinal cords with the distal part of a Spread-out Bragg peak (SOBP). To the best of our knowledge, no study has been conducted highlighting high grades of skin injury at the dose used in this paper.
View Article and Find Full Text PDFGlioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT.
View Article and Find Full Text PDFChondrosarcoma is a malignant tumor that arises from cartilaginous tissue and is radioresistant and chemoresistant to conventional treatments. The preferred treatment consists of surgical resection, which might cause severe disabilities for the patient; in addition, this procedure might be impossible for inoperable locations, such as the skull base. Carbon ion irradiation (hadron therapy) has been proposed as an alternative treatment, primarily due to its greater biological effectiveness and improved ballistic properties compared with conventional radiotherapy with X-rays.
View Article and Find Full Text PDFBreast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.
View Article and Find Full Text PDFSilicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC.
View Article and Find Full Text PDFObjective: Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non-conventional linear energy transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines.
View Article and Find Full Text PDFThe CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results.
View Article and Find Full Text PDFThe optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity.
View Article and Find Full Text PDF