Lipophilic substituents at benzodioxane C (7) of 3-(benzodioxan-2-ylmethoxy)-2,6-difluorobenzamide improve the antibacterial activity against methicillin-resistant Staphylococcus aureus strains to MIC values in the range of 0.2-2.5 μg/mL, whereas hydrophilic substituents at the same position and modifications at the benzodioxane substructure, excepting for replacement with 2-cromanyl, are deleterious.
View Article and Find Full Text PDFA SAR study was performed on 3-substituted 2,6-difluorobenzamides, known inhibitors of the essential bacterial cell division protein FtsZ, through a series of modifications first of 2,6-difluoro-3-nonyloxybenzamide and then of its 3-pyridothiazolylmethoxy analogue PC190723. The study led to the identification of chiral 2,6-difluorobenzamides bearing 1,4-benzodioxane-2-methyl residue at the 3-position as potent antistaphylococcal compounds.
View Article and Find Full Text PDFMimetics of the C-terminal CAAX tetrapeptide of Ras protein were designed as farnesyltransferase (FTase) inhibitors (FTIs) by replacing AA with o-aryl or o-heteroaryl substituted p-hydroxy- or p-aminobenzoic acid, while maintaining the replacement of C with 1,4-benzodioxan-2-ylmethyl or 2-amino-4-thiazolylacetyl residue as in previous CAAX mimetics. Both FTase inhibition and antiproliferative effect were showed by two thiazole derivatives, namely those with 1-naphthyl (10 and 10a) or 3-furanyl (15 and 15a) in the central spacer, and by the benzodioxane derivative with 2-thienyl (6 and 6a) in the same position. Accumulation of unprenylated RAS was demonstrated in cells incubated with 15a.
View Article and Find Full Text PDFPrevious results have shown that replacement of one of the two o-methoxy groups at the phenoxy residue of the potent, but not subtype-selective, α1-AR antagonist (S)-WB4101 [(S)-1] by phenyl, or by ortho,meta-fused cyclohexane, or especially by ortho,meta-fused benzene preferentially elicits α1D-AR antagonist affinity. Such observations inspired the design of four new analogues of 1 bearing, in lieu of the 2,6-dimethoxyphenoxy residue, a 6-methoxy-substituted 7-benzofuranoxy or 7-indolyloxy group or, alternatively, their corresponding 2,3-dihydro form. Of these new compounds, which maintain, rigidified, the characteristic ortho heterodisubstituted phenoxy substructure of 1, the S enantiomer of the dihydrobenzofuranoxy derivative exhibited the highest α1D-AR antagonist affinity (pA2 9.
View Article and Find Full Text PDFUnichiral 8-substituted analogues of 2-[(2-(2,6-dimethoxyphenoxy)ethyl)aminomethyl]-1,4-benzodioxane (WB4101) were synthesized and tested for binding affinity at cloned human α(1a)-, α(1b)-and α(1d)-adrenoreceptor (α(1a)-, α(1b)-and α(1d)-AR) and at native rat 5-HT(1A) receptor and for antagonist affinity at α(1A)-, α(1B)-and α(1D)-AR and at α(2A/D)-AR. Among the selected 8-substituents, namely fluorine, chlorine, methoxyl and hydroxyl, only the last caused significant decrease of α(1) binding affinity in comparison with the lead compound. Functional tests on the S isomers confirmed the detrimental effect of OH positioned in proximity to benzodioxane O(1).
View Article and Find Full Text PDFMimetics of the C-terminal CAAX tetrapeptide of Ras protein were designed replacing internal dipeptide AA with 4-amino-2-phenylbenzoic acid and cysteine (C) with 2-amino-4-thiazolyl-, 2-mercapto-4-thiazolyl-, 2-mercapto-4-imidazolyl- and 2-methylmercapto-4-thiazolyl-acetic or propionic acid. The compound in which C is replaced by 2-amino-4-thiazolylacetic acid inhibited FTase activity in the low nanomolar range and showed antiproliferative effect on rat aortic smooth muscle cells interfering with Ras farnesylation. On the basis of these results, 2-aminothiazole can be considered as an alternative to heterocycles, such as pyridine and imidazole, normally used in FTase inhibitors designed as non-thiol CAAX mimetics.
View Article and Find Full Text PDF