Publications by authors named "Giuseppe Campiani"

KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the bioeffector wood distillate (WD), a plant biostimulant, affects the biochemical and nutritional profile of apples when applied weekly from May to September 2023.
  • Results show that WD significantly enhances various valuable components in apples, such as phenols, flavonoids, tannins, and sugars, particularly in the pulp of the fruit.
  • The findings, validated by advanced techniques like NMR and LC-ESI-MS, suggest that using WD could be beneficial for improving fruit tree cultivation.
View Article and Find Full Text PDF

The flavonoid chrysin is an effective vascular Ca1.2 channel blocker. The aim of this study was to explore the chemical space around chrysin to identify the structural features that can be modified to develop novel and more effective blockers.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs.

View Article and Find Full Text PDF

Research on the energy metabolism of cancer cells is becoming a central element in oncology, and in recent decades, it has allowed us to better understand the mechanisms underlying the onset and chemoresistance of oncological pathologies. Mitochondrial bioenergetic processes, in particular, have proven to be fundamental for the survival of tumor stem cells (CSC), a subpopulation of tumor cells responsible for tumor recurrence, the onset of metastasis, and the failure of conventional anticancer therapies. Over the years, numerous natural products, in particular flavonoids, widely distributed in the plant kingdom, have been shown to interfere with tumor bioenergetics, demonstrating promising antitumor effects.

View Article and Find Full Text PDF
Article Synopsis
  • * Among the leukemias, acute myeloid leukemia (AML) is highly aggressive with poor survival rates, especially in patients with specific gene mutations, while hairy cell leukemia (HCL) remains rare and untreated with approved drugs.
  • * New epigenetic therapies, particularly histone deacetylase (HDAC) inhibitors, show promise in targeting blood cancers, with new hydroxamic acid derivatives demonstrating effectiveness in inducing cell death and improving outcomes in models of AML and other blood cancers.
View Article and Find Full Text PDF

Inherited retinal diseases, which include retinitis pigmentosa, are a family of genetic disorders characterized by gradual rod-cone degeneration and vision loss, without effective pharmacological treatments. Experimental approaches aim to delay disease progression, supporting cones' survival, crucial for human vision. Histone deacetylases (HDACs) mediate the activation of epigenetic and nonepigenetic pathways that modulate cone degeneration in RP mouse models.

View Article and Find Full Text PDF

The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually.

View Article and Find Full Text PDF

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects.

View Article and Find Full Text PDF

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently.

View Article and Find Full Text PDF

A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.

View Article and Find Full Text PDF

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)--, (±)--, and (±)--) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-, (±)-, and (±)-. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. was identified as selective for MAGL when compared with other serine hydrolases.

View Article and Find Full Text PDF

Cinnamic acid and its derivatives represent attractive building blocks for the development of pharmacological tools. A series of piperoniloyl and cinnamoyl-based amides (6-9 a-f) have been synthesized and assayed against a wide panel of colorectal cancer (CRC) cells, with the aim of finding promising anticancer agents. Among all twenty-four synthesized molecules, 7a, 7e-f, 9c, and 9f displayed the best antiproliferative activity.

View Article and Find Full Text PDF

Bio-based products are nowadays useful tools able to affect the productivity and quality of conventionally cultivated crops. Several bio-based products are currently on the market; one of the newest and most promising is the wood distillate (WD) derived from the pyrolysis process of waste biomass after timber. Its foliar application has been widely investigated and shown to promote the antioxidant profile of cultivated crops.

View Article and Find Full Text PDF

(PA), one of the ESKAPE pathogens, is an opportunistic Gram-negative bacterium responsible for nosocomial infections in humans but also for infections in patients affected by AIDS, cancer, or cystic fibrosis (CF). Treatment of PA infections in CF patients is a global healthcare problem due to the ability of PA to gain antibiotic tolerance through biofilm formation. Anti-virulence compounds represent a promising approach as adjuvant therapy, which could reduce or eliminate the pathogenicity of PA without impacting its growth.

View Article and Find Full Text PDF

Aiming to simultaneously modulate the endocannabinoid system (ECS) functions and the epigenetic machinery, we selected the fatty acid amide hydrolase (FAAH) and histone deacetylase (HDAC) enzymes as desired targets to develop potential neuroprotective multitarget-directed ligands (MTDLs), expecting to achieve an additive or synergistic therapeutic effect in oxidative stress-related conditions. We herein report the design, synthesis, and biological evaluation of the first-in-class FAAH-HDAC multitarget inhibitors. A pharmacophore merging strategy was applied, yielding 1-phenylpyrrole-based compounds 4a-j.

View Article and Find Full Text PDF

Topoisomerases are ubiquitous enzymes in the human body, particularly involved in cancer development and progression. Topoisomerase I (topoI) performs DNA relaxation reactions by "controlled rotation" rather than by "strand passage." The inhibition of topoI has become a useful strategy to control cancer cell proliferation.

View Article and Find Full Text PDF

Morin is a vasorelaxant flavonoid, whose activity is ascribable to Ca1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with Ca1.

View Article and Find Full Text PDF

The neuroprotective performance against neuroinflammation of the endocannabinoid system (ECS) can be remarkably improved by indirect stimulation mediated by the pharmacological inhibition of the key ECS catabolic enzyme fatty acid amide hydrolase (FAAH). Based on our previous works and aiming to discover new selective FAAH inhibitors , we herein reported a new series of carbamate-based FAAH inhibitors (4a-t) which showed improved drug disposition properties compared to the previously reported analogues 2a-b. The introduction of ionizable functions allowed us to obtain new FAAH inhibitors of nanomolar potency characterized by good water solubility and chemical stability at physiological pH.

View Article and Find Full Text PDF

The glycogen synthase kinase 3β (GSK-3β) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3β potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step.

View Article and Find Full Text PDF

The sustainable use of resources is essential in all production areas, including pharmaceuticals. However, the aspect of sustainability needs to be taken into consideration not only in the production phase, but during the whole medicinal chemistry drug discovery trajectory. The continuous progress in the fields of green chemistry and the use of artificial intelligence are contributing to the speed and effectiveness of a more sustainable drug discovery pipeline.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with -HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is.

View Article and Find Full Text PDF

Sesquiterpenes such as leucodin and the labdane-type diterpene manool are natural compounds endowed with remarkably in vitro vasorelaxant and in vivo hypotensive activities. Given their structural similarity with the sesquiterpene lactone (+)-sclareolide, this molecule was selected as a scaffold to develop novel vasoactive agents. Functional, electrophysiology, and molecular dynamics studies were performed.

View Article and Find Full Text PDF

Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases.

View Article and Find Full Text PDF

spp. are responsible for up to 1 million new cases each year. The current therapeutic arsenal against is largely inadequate, and there is an urgent need for better drugs.

View Article and Find Full Text PDF