The reverse bias stability is a key concern for the commercialization and reliability of halide perovskite photovoltaics. Here, the robustness of perovskite-silicon tandem solar cells to reverse bias electrical degradation down to -40 V is investigated. The two-terminal tandem configuration, with the perovskite coupled to silicon, can improve the solar cell resistance to severe negative voltages when the tandem device is properly designed.
View Article and Find Full Text PDFThe oxidative coupling reaction of two Ni(II) porphyrins meso-substituted with three and four phenyl groups, Ni(II) 5,10,15-(triphenyl)porphyrin (NiPhP) and Ni(II) 5,10,15,20-(tetraphenyl)porphyrin (NiPhP) respectively, was investigated in a oxidative chemical vapor deposition (oCVD) process. Irrespective of the number of meso-substituents, high-resolution mass spectrometry evidences the formation of oligomeric species containing up to five porphyrin units. UV-Vis-NIR and XPS analyses of the oCVD films highlighted a strong dependence of the intermolecular coupling reaction with the substrate temperature.
View Article and Find Full Text PDFLead is one of the key metals of the all-inorganic lead halide perovskites. This work tailors novel architectures of lead's coordination sphere using a β-diketone (H-hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione) and a glyme (monoglyme, diglyme, triglyme, or tetraglyme) ligand. The coordination chemistry and thermal behaviour of these "Pb(hfa)·glyme" adducts have been analysed through FT-IR spectroscopy, H and C NMR analyses, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature.
View Article and Find Full Text PDFThe straightforward synthesis of directly fused porphyrins (porphyrin tapes) from 5,15-diphenyl porphyrinato nickel(ii) complexes with different substituents on the phenyl rings is achieved while processing from the gas phase. The porphyrin tapes, exhibiting NIR absorption, are readily obtained in thin film form. The gas phase approach cuts the need for solubilizing groups allowing for the first time the study of their conductivity according to the substituent.
View Article and Find Full Text PDFOxidative chemical vapour deposition of (5,15-diphenylporphyrinato)nickel(II) (NiDPP) with iron(III) chloride as oxidant yielded a conjugated poly(metalloporphyrin) as a highly coloured thin film, which is potentially useful for optoelectronic applications. This study clarified the reactive sites of the porphyrin monomer NiDPP by HRMS, UV/Vis/NIR spectroscopy, cyclic voltammetry and EPR spectroscopy in combination with quantum chemical calculations. Unsubstituted meso positions are essential for successful polymerisation, as demonstrated by varying the porphyrin meso substituent pattern from di- to tri- and tetraphenyl substitution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2019
Oxidative polymerization of nickel(II) 5,15-diphenyl porphyrin and nickel(II) 5,15-bis(di-3,5-tert-butylphenyl) porphyrin by oxidative chemical vapor deposition (oCVD) yields multiply fused porphyrin oligomers in thin film form. The oCVD technique enables one-step formation, deposition, and p-doping of conjugated poly(porphyrins) coatings without solvents or post-treatments. The decisive reactions and side reactions during the oCVD process are shown by high-resolution mass spectrometry.
View Article and Find Full Text PDF