Publications by authors named "Giuseppe Belardo"

Aim: The only small molecule drugs currently available for treatment of influenza A virus (IAV) are M2 ion channel blockers and sialidase inhibitors. The prototype thiazolide, nitazoxanide, has successfully completed Phase III clinical trials against acute uncomplicated influenza.

Results: We report the activity of seventeen thiazolide analogs against A/PuertoRico/8/1934(H1N1), a laboratory-adapted strain of the H1N1 subtype of IAV, in a cell culture-based assay.

View Article and Find Full Text PDF

The emergence of drug-resistant influenza A virus (IAV) strains represents a serious threat to global human health and underscores the need for novel approaches to anti-influenza chemotherapy. Combination therapy with drugs affecting different IAV targets represents an attractive option for influenza treatment. We have previously shown that the thiazolide anti-infective nitazoxanide (NTZ) inhibits H1N1 IAV replication by selectively blocking viral hemagglutinin maturation.

View Article and Find Full Text PDF

Rotaviruses, nonenveloped viruses presenting a distinctive triple-layered particle architecture enclosing a segmented double-stranded RNA genome, exhibit a unique morphogenetic pathway requiring the formation of cytoplasmic inclusion bodies called viroplasms in a process involving the nonstructural viral proteins NSP5 and NSP2. In these structures the concerted packaging and replication of the 11 positive-polarity single-stranded RNAs take place to generate the viral double-stranded RNA (dsRNA) genomic segments. Rotavirus infection is a leading cause of gastroenteritis-associated severe morbidity and mortality in young children, but no effective antiviral therapy exists.

View Article and Find Full Text PDF

The NSAID (non-steroidal anti-inflammatory drug) indomethacin, a cyclo-oxygenase-1 and -2 inhibitor with anti-inflammatory and analgesic properties, is known to possess anticancer activity against CRC (colorectal cancer) and other malignancies in humans; however, the mechanism underlying the anticancer action remains elusive. In the present study we show that indomethacin selectively activates the dsRNA (double-stranded RNA)-dependent protein kinase PKR in a cyclo-oxygenase-independent manner, causing rapid phosphorylation of eIF2α (the α-subunit of eukaryotic translation initiation factor 2) and inhibiting protein synthesis in colorectal carcinoma and other types of cancer cells. The PKR-mediated translational block was followed by inhibition of CRC cell proliferation and apoptosis induction.

View Article and Find Full Text PDF

Melanoma is the most aggressive form of skin cancer, it originates from melanocytes and its incidence has increased in the last decade. Recent advances in the understanding of the underlying biology of the progression of melanoma have identified key signalling pathways that are important in promoting melanoma tumourigenesis, thus providing dynamic targets for therapy. One such important target identified in melanoma tumour progression is the Nuclear Factor-kappaB (NF-kappaB) pathway.

View Article and Find Full Text PDF

Nuclear factor-kappaB (NF-kappaB), a stress-regulated transcription factor belonging to the Rel family, has a pivotal role in the control of the inflammatory and the innate immune responses. Its activation rapidly induces the transcription of a variety of genes encoding cell adhesion molecules, inflammatory and chemotactic cytokines, cytokine receptors, and enzymes that produce inflammatory mediators. More recently, NF-kappaB activation has been connected with multiple aspects of oncogenesis, including the control of cell proliferation, migration, cell cycle progression, and apoptosis.

View Article and Find Full Text PDF

Cyclopentenone prostaglandins are potent inhibitors of nuclear factor-kappa B (NF-kappa B), a transcription factor with a critical role in promoting inflammation and connected with multiple aspects of oncogenesis and cancer cell survival. In the present report, we investigated the role of NF-kappa B in the antineoplastic activity of the cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in multiple myeloma (MM) and Burkitt lymphoma (BL) cells expressing constitutively active NF-kappa B. 15d-PGJ(2) was found to suppress constitutive NF-kappa B activity and potently induce apoptosis in both types of B-cell malignancies.

View Article and Find Full Text PDF

Objectives: Herpes simplex virus (HSV) infections have been associated with reactivation of HIV-1 replication and increases of HIV-1-load in plasma of co-infected individuals. The present authors have previously reported that in epithelial cells HSV-1 induces the IkappaB-kinase (IKK) causing persistent activation of NF-kappaB, a critical regulator of HIV-1 replication. The present study was performed to investigate whether HSV-1-infection could induce IKK-mediated NF-kappaB activation and enhance HIV-1 expression in human T cells, and to analyze the effect of the IKK-inhibitor prostaglandin A1 (PGA1) and other prostanoids on the NF-kappaB-mediated HSV-HIV interaction.

View Article and Find Full Text PDF