Publications by authors named "Giuseppe Barbalinardo"

Anomalous heat transport in one-dimensional nanostructures, such as nanotubes and nanowires, is a widely debated problem in condensed matter and statistical physics, with contradicting pieces of evidence from experiments and simulations. Using a comprehensive modeling approach, comprised of lattice dynamics and molecular dynamics simulations, we proved that the infinite length limit of the thermal conductivity of a (10,0) single-wall carbon nanotube is finite but this limit is reached only for macroscopic lengths due to a thermal phonon mean free path of several millimeters. Our calculations showed that the extremely high thermal conductivity of this system at room temperature is dictated by quantum effects.

View Article and Find Full Text PDF

We introduce a novel approach to model heat transport in solids, based on the Green-Kubo theory of linear response. It naturally bridges the Boltzmann kinetic approach in crystals and the Allen-Feldman model in glasses, leveraging interatomic force constants and normal-mode linewidths computed at mechanical equilibrium. At variance with molecular dynamics, our approach naturally and easily accounts for quantum mechanical effects in energy transport.

View Article and Find Full Text PDF