Publications by authors named "Gius D"

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney.

View Article and Find Full Text PDF

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels.

View Article and Find Full Text PDF

The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout () mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression () protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment.

View Article and Find Full Text PDF

Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac.

View Article and Find Full Text PDF

Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue.

View Article and Find Full Text PDF

Cisplatin is a potent drug used in about 40% of cancer treatment but also leads to severe deafness in 60-80% of the cases. Although the mechanism is known to be related to the accumulation of reactive oxygen species (ROS), no drug or FDA approved treatment is currently available to prevent cisplatin ototoxicity. With this study, we show for the first time that honokiol (HNK), a pleiotropic poly-phenol prevents cisplatin-induced hearing loss.

View Article and Find Full Text PDF

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells.

View Article and Find Full Text PDF

KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications.

View Article and Find Full Text PDF

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues.

View Article and Find Full Text PDF

Manganese superoxide dismutase (MnSOD) functions as a tumor suppressor; however, once tumorigenesis occurs, clinical data suggest MnSOD levels correlate with more aggressive human tumors, implying a potential dual function of MnSOD in the regulation of metabolism. Here we show, using in vitro transformation and xenograft growth assays that the MnSOD-K68 acetylation (Ac) mimic mutant (MnSOD) functions as a tumor promoter. Interestingly, in various breast cancer and primary cell types the expression of MnSOD is accompanied with a change of MnSOD's stoichiometry from a known homotetramer complex to a monomeric form.

View Article and Find Full Text PDF

In this issue of , Ranoa and colleagues report on the role of STING (stimulator of IFN genes, ) in regulating critical tumor cell-intrinsic functions including cell-cycle progression, chromosomal stability, and cellular response to therapeutic ionizing radiation. The authors used multiple methods including RNA expression profiling, molecular and biochemical techniques, cell biology, and reagents from genetically modified murine models to test their hypothesis that downregulating the STING pathway in cancer cells promotes cellular transformation through accumulation of chromosomal instability and premature progression of the cell cycle. Their findings demonstrate that STING is a tumor suppressor that inhibits cell proliferation by restricting entry to mitosis as well as protecting cells against aneuploidy.

View Article and Find Full Text PDF

During wound injury, efferocytosis fills the macrophage with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to how metabolic phagocytic signaling regulates the signature anti-inflammatory macrophage response. Here we report the metabolome of activated macrophages during efferocytosis to reveal an interleukin-10 (IL-10) cytokine escalation that was independent of glycolysis yet bolstered by apoptotic cell fatty acids and mitochondrial β-oxidation, the electron transport chain, and heightened coenzyme NAD.

View Article and Find Full Text PDF

The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice.

View Article and Find Full Text PDF
Article Synopsis
  • * The study showed that SIRT2, a protein involved in regulating acetylation, plays a crucial role in the signaling process related to IFNs by modifying another protein called CDK9, impacting important phosphorylation events.
  • * These insights highlight a new pathway in IFN signaling that could be targeted for developing therapies aimed at immune-related diseases and cancer treatment.
View Article and Find Full Text PDF

Mice lacking Sirt2 spontaneously develop tumors in multiple organs, as well as when expressed in combination with oncogenic Kras, leading to pancreatic tumors. Here, we report that after caerulein-induced pancreatitis, Sirt2-deficient mice exhibited an increased inflammatory phenotype and delayed pancreatic tissue recovery. Seven days post injury, the pancreas of Sirt2 mice display active inflammation, whereas wild-type mice had mostly recovered.

View Article and Find Full Text PDF

Mammalian cells use a complex network of redox-dependent processes necessary to maintain cellular integrity during oxidative metabolism, as well as to protect against and/or adapt to stress. The disruption of these redox-dependent processes, including those in the mitochondria, creates a cellular environment permissive for progression to a malignant phenotype and the development of resistance to commonly used anticancer agents. An extension of this paradigm is that when these mitochondrial functions are altered by the events leading to transformation and ensuing downstream metabolic processes, they can be used as molecular biomarkers or targets in the development of new therapeutic interventions to selectively kill and/or sensitize cancer versus normal cells.

View Article and Find Full Text PDF

Exosomes play a pivotal role in mediating intercellular communications and package delivery. They have recently been discovered to serve as diagnostic biomarkers as well as a possible drug delivery vehicle based on their nanometer size range and capability to transfer biological materials to recipient cells. Their unique biocompatibility, high stability, preferred tumor homing, and adjustable targeting efficiency can make exosomes an attractive and potentially effective tool of drug delivery in cancer therapy.

View Article and Find Full Text PDF

Background/aim: Sirtuins (SIRTs) play crucial roles in various signaling pathways that modulate differentiation and proliferation. We sought to elucidate the role of SIRTs in differentiation and proliferation of human neuroblastoma (NB).

Materials And Methods: NB cells were treated with nicotinamide (NAM), a non-specific SIRT inhibitor, SIRT-targeted short hairpin RNAs, and retinoic acid to assess cell growth and differentiation.

View Article and Find Full Text PDF

Extracellular vesicles containing glycogen phosphorylase, brain/heart (PYGB) have been demonstrated as a sensitive biomarker for normal cardiac injuries for patients after chemotherapy. Oxidative stress was suggested to be the mechanism behind the chemotherapy-induced tissue damage and augmented with mitochondrial antioxidant could be an effective means of early intervention. .

View Article and Find Full Text PDF

The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2, and Nrf2; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days.

View Article and Find Full Text PDF

It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.

View Article and Find Full Text PDF

Twenty-four hours of fasting is known to blunt activation of the human NLRP3 inflammasome. This effect might be mediated by SIRT3 activation, controlling mitochondrial reactive oxygen species. To characterize the molecular underpinnings of this fasting effect, we comparatively analyzed the NLRP3 inflammasome response to nutrient deprivation in wild-type and SIRT3 knock-out mice.

View Article and Find Full Text PDF

The isocitrate dehydrogenase IDH2 produces α-ketoglutarate by oxidizing isocitrate, linking glucose metabolism to oxidative phosphorylation. In this study, we report that loss of SIRT3 increases acetylation of IDH2 at lysine 413 (IDH2-K413-Ac), thereby decreasing its enzymatic activity by reducing IDH2 dimer formation. Expressing a genetic acetylation mimetic IDH2 mutant (IDH2) in cancer cells decreased IDH2 dimerization and enzymatic activity and increased cellular reactive oxygen species and glycolysis, suggesting a shift in mitochondrial metabolism.

View Article and Find Full Text PDF