Publications by authors named "Giulio Vampa"

An inline-delay Fourier transform imaging spectrometer (iFTIS) is used to measure spatiospectral coupling in a mid-infrared (mid-IR) optical parametric amplifier (OPA). The method employs a compact inline delay line using a birefringent wedge pair and a microbolometer array as an imaging sensor, providing continuous spectral coverage from ∼0.4 to 4.

View Article and Find Full Text PDF

High-harmonic generation in solids allows probing and controlling electron dynamics in crystals on few femtosecond timescales, paving the way to lightwave electronics. In the spatial domain, recent advances in the real-space interpretation of high-harmonic emission in solids allows imaging the field-free, static, potential of the valence electrons with picometer resolution. The combination of such extreme spatial and temporal resolutions to measure and control strong-field dynamics in solids at the atomic scale is poised to unlock a new frontier of lightwave electronics.

View Article and Find Full Text PDF

We report the measurement of high-order harmonics from a ZnO crystal with photon energies up to 11 eV generated by a high-repetition-rate femtosecond Cr:ZnS laser operating in the mid-infrared at 2-3 μm, delivering few-cycle pulses with multi-watt average power and multi-megawatt peak power. High-focus intensity is achieved in a single pass through the crystal without a buildup cavity or nanostructued pattern for field enhancement. We measure in excess of 10 high-harmonic photons/second.

View Article and Find Full Text PDF

The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology.

View Article and Find Full Text PDF