Hallucinations can occur in the healthy population, are clinically relevant and frequent symptoms in many neuropsychiatric conditions, and have been shown to mark disease progression in patients with neurodegenerative disorders where antipsychotic treatment remains challenging. Here, we combine MR-robotics capable of inducing a clinically-relevant hallucination, with real-time fMRI neurofeedback (fMRI-NF) to train healthy individuals to up-regulate a fronto-parietal brain network associated with the robotically-induced hallucination. Over three days, participants learned to modulate occurrences of and transition probabilities to this network, leading to heightened sensitivity to induced hallucinations after training.
View Article and Find Full Text PDFThe use of hands for gathering rich sensory information is essential for proper interaction with the environment; therefore, the restoration of sensation is critical for reestablishing the sense of embodiment in hand amputees. Here, we show that a noninvasive wearable device can be used to provide thermal sensations on amputees' phantom hands. The device delivers thermal stimuli to specific regions of skin on their residual limb.
View Article and Find Full Text PDFVisuo-motor integration shapes our daily experience and underpins the sense of feeling in control over our actions. The last decade has seen a surge in robotically and virtually mediated interactions, whereby bodily actions ultimately result in an artificial movement. But despite the growing number of applications, the neurophysiological correlates of visuo-motor processing during human-machine interactions under dynamic conditions remain scarce.
View Article and Find Full Text PDFAlthough hallucinations are important and frequent symptoms in major psychiatric and neurological diseases, little is known about their brain mechanisms. Hallucinations are unpredictable and private experiences, making their investigation, quantification and assessment highly challenging. A major shortcoming in hallucination research is the absence of methods able to induce specific and short-lasting hallucinations, which resemble clinical hallucinations, can be elicited repeatedly and vary across experimental conditions.
View Article and Find Full Text PDFA growing number of studies have focused on identifying cognitive processes that are modulated by interoceptive signals, particularly in relation to the respiratory or cardiac cycle. Considering the fundamental role of interoception in bodily self-consciousness, we here investigated whether interoceptive signals also impact self-voice perception. We applied an interactive, robotic paradigm associated with somatic passivity (a bodily state characterized by illusory misattribution of self-generated touches to someone else) to investigate whether somatic passivity impacts self-voice perception as a function of concurrent interoceptive signals.
View Article and Find Full Text PDFThe perception that someone is nearby, although nobody can be seen or heard, is called presence hallucination (PH). Being a frequent hallucination in patients with Parkinson's disease, it has been argued to be indicative of a more severe and rapidly advancing form of the disease, associated with psychosis and cognitive decline. PH may also occur in healthy individuals and has recently been experimentally induced, in a controlled manner during fMRI, using MR-compatible robotics and sensorimotor stimulation.
View Article and Find Full Text PDFPrevious studies have shown that self-generated stimuli in auditory, visual, and somatosensory domains are attenuated, producing decreased behavioral and neural responses compared with the same stimuli that are externally generated. Yet, whether such attenuation also occurs for higher-level cognitive functions beyond sensorimotor processing remains unknown. In this study, we assessed whether cognitive functions such as numerosity estimations are subject to attenuation in 56 healthy participants (32 women).
View Article and Find Full Text PDFHallucinations in Parkinson's disease (PD) are disturbing and frequent non-motor symptoms and constitute a major risk factor for psychosis and dementia. We report a robotics-based approach applying conflicting sensorimotor stimulation, enabling the induction of presence hallucinations (PHs) and the characterization of a subgroup of patients with PD with enhanced sensitivity for conflicting sensorimotor stimulation and robot-induced PH. We next identify the fronto-temporal network of PH by combining MR-compatible robotics (and sensorimotor stimulation in healthy participants) and lesion network mapping (neurological patients without PD).
View Article and Find Full Text PDFSensorimotor conflicts are known to alter the perception of accompanying sensory signals, and deficits in sensory attenuation have been observed in schizophrenia. In the auditory domain, self-generated tones or voices (compared to tones or voices presented passively or with temporal delays) have been associated with changes in loudness perception and attenuated neural responses. It has been argued that for sensory signals to be attenuated, predicted and sensory consequences must have a consistent spatiotemporal relationship, between button presses and reafferent signals, via predictive sensory signaling, a process altered in schizophrenia.
View Article and Find Full Text PDFPsychosis, characterized by hallucinations and delusions, is a common feature of psychiatric disease, especially schizophrenia. One prominent theory posits that psychosis is driven by abnormal sensorimotor predictions leading to the misattribution of self-related events. This misattribution has been linked to passivity experiences (PE), such as loss of agency and, more recently, to presence hallucinations (PH), defined as the conscious experience of the presence of an alien agent while no person is actually present.
View Article and Find Full Text PDFThought insertion (TI) is characterized by the experience that certain thoughts, occurring in one's mind, are not one's own, but the thoughts of somebody else and suggestive of a psychotic disorder. We report a robotics-based method able to investigate the behavioral and subjective mechanisms of TI in healthy participants. We used a robotic device to alter body perception by providing online sensorimotor stimulation, while participants performed cognitive tasks implying source monitoring of mental states attributed to either oneself or another person.
View Article and Find Full Text PDFSpinal cord stimulation (SCS) is an approved treatment for truncal and limb neuropathic pain. However, pain relief is often suboptimal and SCS efficacy may reduce over time, requiring sometimes the addition of other pain therapies, stimulator revision, or even explantation. We designed and tested a new procedure by combining SCS with immersive virtual reality (VR) to enable analgesia in patients with chronic leg pain.
View Article and Find Full Text PDFDysfunction of sensorimotor predictive processing is thought to underlie abnormalities in self-monitoring producing passivity symptoms in psychosis. Experimentally induced sensorimotor conflict can produce a failure in bodily self-monitoring (presence hallucination [PH]), yet it is unclear how this is related to auditory self-monitoring and psychosis symptoms. Here we show that the induction of sensorimotor conflict in early psychosis patients induces PH and impacts auditory-verbal self-monitoring.
View Article and Find Full Text PDFCurrent neuroscientific models of bodily self-consciousness (BSC) argue that inaccurate integration of sensory signals leads to altered states of BSC. Indeed, using virtual reality technology, observers viewing a fake or virtual body while being exposed to tactile stimulation of the real body, can experience illusory ownership over-and mislocalization towards-the virtual body (Full-Body Illusion, FBI). Among the sensory inputs contributing to BSC, the vestibular system is believed to play a central role due to its importance in estimating self-motion and orientation.
View Article and Find Full Text PDFPeripheral intraneural stimulation can provide tactile information to amputees. However, efforts are still necessary to identify encoding strategy eliciting percepts that are felt as both natural and effective for prosthesis control. Here we compared the naturalness and efficacy of different encoding strategies to deliver neural stimulation to trans-radial amputees implanted with intraneural electrodes.
View Article and Find Full Text PDFNeuroprosthetics research in amputee patients aims at developing new prostheses that move and feel like real limbs. Targeted muscle and sensory reinnervation (TMSR) is such an approach and consists of rerouting motor and sensory nerves from the residual limb towards intact muscles and skin regions. Movement of the myoelectric prosthesis is enabled via decoded electromyography activity from reinnervated muscles and touch sensation on the missing limb is enabled by stimulation of the reinnervated skin areas.
View Article and Find Full Text PDFCognetics joins the cognitive neuroscience of bodily awareness with robotics to study, control, and enhance perception, cognition, and consciousness. We highlight robot-controlled bodily perception, conscious states, and social interactions and sketch how future cognetic interfaces will impact cognitive neuroscience and human enhancement.
View Article and Find Full Text PDFTales of ghosts, wraiths, and other apparitions have been reported in virtually all cultures. The strange sensation that somebody is nearby when no one is actually present and cannot be seen (feeling of a presence, FoP) is a fascinating feat of the human mind, and this apparition is often covered in the literature of divinity, occultism, and fiction. Although it is described by neurological and psychiatric patients and healthy individuals in different situations, it is not yet understood how the phenomenon is triggered by the brain.
View Article and Find Full Text PDFBodily self-consciousness has become an important topic in cognitive neuroscience aiming to understand how the brain creates a unified sensation of the self in a body. Specifically, full body illusion (FBI) in which changes in bodily self-consciousness are experimentally introduced by using visual-tactile stimulation has led to improve understanding of these mechanisms. This paper introduces a novel approach to the classic FBI paradigm using a robotic master-slave system which allows us to examine interactions between action and the sense of body ownership in behavioral and MRI experiments.
View Article and Find Full Text PDFManipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm.
View Article and Find Full Text PDFThe present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal congruency task, by responding to tactile vibrations applied to their hands, while ignoring visual distractors superimposed on the robotic tools.
View Article and Find Full Text PDFThe effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e.
View Article and Find Full Text PDFRobotic surgery, i.e. master-slave telemanipulators for surgery, is rapidly developing.
View Article and Find Full Text PDF