Background: Arterial dissection, a condition marked by the tearing of the carotid artery's inner layers, can result in varied clinical outcomes, including progression, stability, or spontaneous regression. Understanding these outcomes' underlying mechanisms is crucial for enhancing patient care, particularly with the increasing use of computer simulations in medical diagnostics and treatment planning. The aim of this study is to utilize computational analysis of blood flow and vascular wall to: (1) understand the pathophysiology of stroke-like episodes in patients with carotid artery dissection; and (2) assess the effectiveness of this method in predicting the evolution of carotid dissection.
View Article and Find Full Text PDFInversion of the left atrial appendage is a rare phenomenon, which may occur during the de-airing maneuvers associated to routinely performed surgery procedures, such as cardiopulmonary bypass or left ventricular assist device implantation. In this case, the body of the inverted appendage can obstruct the mitral valve leading to severe complications. The mechanisms are still poorly known, and more specific studies are needed to better understand its causes and identify mitigating strategies.
View Article and Find Full Text PDFBackground: Complications of atrial fibrillation (AF) include ischemic events originating within the left atrial appendage (LAA), a protrusion of the left atrium with variable morphological characteristics. The role of the patient specific morphology and pathological haemodynamics on the risk of ischemia remains unclear.
Methods: This work performs a comparative assessment of the hemodynamic parameters among patient-specific LAA morphologies through fluid-structure interaction computational analyses.
Background: A large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid-structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF.
Methods: Three operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation.
Atrial fibrillation () is a common arrhythmia mainly affecting the elderly population, which can lead to serious complications such as stroke, ischaemic attack and vascular dementia. These problems are caused by thrombi which mostly originate in the left atrial appendage (), a small muscular sac protruding from left atrium. The abnormal heart rhythm associated with results in alterations in the heart muscle contractions and in some reshaping of the cardiac chambers.
View Article and Find Full Text PDFJ Undergrad Neurosci Educ
December 2019
The electrical equivalent circuit for a neuron is composed of common electrical components in a configuration that replicates the passive electrical properties and behaviors of the neural membrane. It is a powerful tool used to derive such fundamental neurophysiological equations as the Hodgkin-Huxley equations, and it is also the basis for well-known exercises that help students to model the passive (Ohmic) properties of the neuronal membrane. Unfortunately, as these exercises require basic knowledge of electronics, they are generally not physically conducted in biomedical courses, but remain merely conceptual exercises in a book or simulations on a computer.
View Article and Find Full Text PDF