Publications by authors named "Giulio Giovannetti"

Radiofrequency (RF) transmitter and receiver coils are employed in in magnetic resonance (MR) applications to, respectively, excite the nuclei in the object to be imaged and to pick up the signals emitted by the nuclei with a high signal-to-noise ratio (SNR). The ability to obtain high-quality images and spectra in MR strongly depends on the RF coil's efficiency. Local coil efficiency can be estimated with magnetic field mapping methods evaluated at a fixed point in space.

View Article and Find Full Text PDF

Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques.

View Article and Find Full Text PDF

Magnetic resonance (MR) with sodium (Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable Na signal and the low Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of Na magnetic resonance imaging (MRI) with a clinical scanner.

View Article and Find Full Text PDF

This theoretical study presents the design and analytical/numerical optimization of novel dual-channel transverse fields radiofrequency (RF) surface coils for 1.5 T Magnetic Resonance Imaging (MRI). The research explores a planar setup with two channels on a row with aligned spatial orientation of the RF coils, aiming to solve a common design drawback of single-channel transverse field RF coils: the reduced Field Of View (FOV) along the direction of the RF field.

View Article and Find Full Text PDF

Radiofrequency (RF) coils for magnetic resonance imaging (MRI) applications serve to generate RF fields to excite the nuclei in the sample (transmit coil) and to pick up the RF signals emitted by the nuclei (receive coil). For the purpose of optimizing the image quality, the performance of RF coils has to be maximized. In particular, the transmit coil has to provide a homogeneous RF magnetic field, while the receive coil has to provide the highest signal-to-noise ratio (SNR).

View Article and Find Full Text PDF

Radiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample's region, while surface RF coils, usually smaller than volume coils, typically have a higher Signal-to-Noise Ratio (SNR) in a reduced Region Of Interest (ROI) close to the coil plane but a relatively poorer field homogeneity. Circular and square loops are the simplest and most used design for developing axial field surface RF coils.

View Article and Find Full Text PDF

The design of optimized radiofrequency (RF) coils is a fundamental task for maximizing the signal-to-noise ratio (SNR) in Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) applications. An efficient coil should be designed by minimizing the coil noise with respect to the sample noise, since coil conductor resistance affects data quality by reducing the SNR, especially for coils tuned to a low frequency. Such conductor losses strongly depend on the frequency (due to the skin effect) and on the conductor cross-sectional shape (strip or wire).

View Article and Find Full Text PDF

The study of fossils and mummies has largely benefited from the use of modern noninvasive and nondestructive imaging technologies and represents a fast developing area. In this review, we describe the emerging role of imaging based on Magnetic Resonance (MR) and Computer Tomography (CT) employed for the study of ancient remains and mummies. For each methodology, the state of the art in paleoradiology applications is described, by emphasizing new technologies developed in the field of both CT, such as micro- and nano-CT, dual-energy and multi-energy CT, and MR, with the description of novel dedicated sequences, radiofrequency coils and gradients.

View Article and Find Full Text PDF

In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment.

View Article and Find Full Text PDF

Hyperpolarized C Magnetic Resonance (MR) is a promising technique for in vivo non-invasive assessment of metabolism in humans. Despite the considerable signal increase provided by hyperpolarization techniques, the low molar concentration of derivate C metabolites gives rise to technological limits in terms of data quality. The development of dedicated radio frequency coils, capable of providing a large field of view with high signal-to-noise ratio data, is thus a fundamental task.

View Article and Find Full Text PDF

The purpose of this study is to analyze exposure to the time-varying magnetic field caused by worker movements in a 3-T clinical magnetic resonance imaging (MRI) scanner. Measurements of the static magnetic field () in the proximity of the MRI scanner were performed to create a detailed map of the spatial gradient of , in order to indicate the areas at high risk of exposure. Moreover, a personal exposure recording system was used in order to analyze and compare exposure to the static magnetic field during different routine procedures in MRI.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance evaluations generally require a radiofrequency coil setup comprising a transmit whole-body coil and a receive coil. In particular, radiofrequency phased-array coils are employed to pick up the signals emitted by the nuclei with high signal-tonoise ratio and a large region of sensitivity.

Methods: Literature discussed different technical issues on how to minimize interactions between array elements and how to combine data from such elements to yield optimum Signal-to-Noise Ratio images.

View Article and Find Full Text PDF

Concerning the occupational exposure in magnetic resonance imaging (MRI) facilities, the worker behavior in the magnetic resonance (MR) room is of such particular importance that there is the need for a simple but reliable method to alert the worker of the highest magnetic field exposure. Here, we describe a quantitative analysis of occupational exposure in different MRI working environments: in particular, we present a field measurement method integrated with a software tool for an accurate mapping of the fringe field in the proximity of the magnetic resonance bore. Three illustrative assessment studies are finally presented, compared and discussed, considering an example of a realistic path followed by an MRI worker during the daily procedure.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is one of the most common sources of electromagnetic (EM) fields as a diagnostic technique widely used in medicine. MRI staff during the working day is constantly exposed to static and spatially heterogeneous magnetic field. Also, moving around the MRI room to perform their functions, workers are exposed to slowly time-varying magnetic fields that induce electrical currents and fields in the body.

View Article and Find Full Text PDF

Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample.

View Article and Find Full Text PDF

Coils simulation and design is a fundamental task to maximize Signal-to-Noise Ratio in Magnetic Resonance applications. In the meantime, in the last years the issue of accurate communication antennas analysis has grown. Coil design techniques take advantage of computer simulations in dependence on the magnetic field wavelength and coil sizes.

View Article and Find Full Text PDF

Cardiac magnetic resonance (CMR) is a relevant diagnostic tool for the evaluation of cardiac morphology, function, and mass. The assessment of myocardial tissue content through the measurement of longitudinal (T1) and transversal (T2) relaxation properties and the development of different technical advances are important clinical novelties of CMR. Recently, magnetic resonance spectroscopy has been explored for the assessment of the metabolic state of tissue for cardiac function evaluation by using nuclei other than protons, such as C and Na, expanding our knowledge of the kinetics of metabolic processes.

View Article and Find Full Text PDF

Hyperpolarized carbon-13 magnetic resonance spectroscopy (MRS) is a powerful tool to explore tissue metabolic state, by permitting the study of intermediary metabolism of biomolecules in vivo. However, a number of technological problems still limit this technology and need innovative solutions. In particular, the low molar concentration of derivate metabolites give rise to low signal-to-noise ratio (SNR), which makes the design and development of dedicated radiofrequency (RF) coils a fundamental task.

View Article and Find Full Text PDF

Nondestructive diagnostic imaging for mummies study has a long tradition and high-resolution images of the samples morphology have been extensively acquired by using computed tomography (CT). However, although in early reports no signal or image was obtained because of the low water content, mummy magnetic resonance imaging (MRI) was demonstrated able to generate images of such ancient specimens by using fast imaging techniques. Literature demonstrated the general feasibility of nonclinical MRI for visualizing historic human tissues, which is particularly interesting for archeology.

View Article and Find Full Text PDF

Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples.

View Article and Find Full Text PDF

Magnetic resonance imaging and magnetic resonance spectroscopy are noninvasive diagnostic techniques based on the phenomenon of nuclear magnetic resonance. Radiofrequency coils are key components in both the transmission and receiving phases of magnetic resonance systems. Transmitter coils have to produce a highly homogeneous alternating field in a wide field of view, whereas receiver coils have to maximize signal detection while minimizing noise.

View Article and Find Full Text PDF

Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty acid, we focused on [1-(13) C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-(13) C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to 3 mmol.

View Article and Find Full Text PDF

Background: Reconstruction methods for Non-Cartesian magnetic resonance imaging have often been analyzed using the root mean square error (RMSE). However, RMSE is not able to measure the level of structured error associated with the reconstruction process.

Methods: An index for geometric information loss was presented using the 2D autocorrelation function.

View Article and Find Full Text PDF