The aim of the present study was to quantify joint kinematics through a wearable sensor system in multidirectional high-speed complex movements used in a protocol for rehabilitation and return to sport assessment after Anterior Cruciate Ligament (ACL) injury, and to validate it against a gold standard optoelectronic marker-based system. Thirty-four healthy athletes were evaluated through a full-body wearable sensor (MTw Awinda, Xsens) and a marker-based optoelectronic (Vicon Nexus, Vicon) system during the execution of three tasks: drop jump, forward sprint, and 90° change of direction. Clinically relevant joint angles of lower limbs and trunk were compared through Pearson's correlation coefficient (r), and the Coefficient of Multiple Correlation (CMC).
View Article and Find Full Text PDFBackground and purpose - Gait analysis is indicated in children with cerebral palsy (CP) to identify and quantify gait deviations. One particularly difficult-to-treat deviation, crouch gait, can progress in adolescence and ultimately limit the ability to ambulate. An objective quantitative assessment is essential to early identify progressive gait impairments in children with CP.
View Article and Find Full Text PDF