Earthquakes often occur along faults in the presence of hot, pressurized water. Here we exploit a new experimental device to study friction in gabbro faults with water in vapor, liquid and supercritical states (water temperature and pressure up to 400 °C and 30 MPa, respectively). The experimental faults are sheared over slip velocities from 1 μm/s to 100 mm/s and slip distances up to 3 m (seismic deformation conditions).
View Article and Find Full Text PDFEarthquakes occur because faults weaken with increasing slip and slip rate. Thermal pressurization (TP) of trapped pore fluids is deemed to be a widespread coseismic fault weakening mechanism. Yet, due to technical challenges, experimental evidence of TP is limited.
View Article and Find Full Text PDFActive faulting and deep-seated gravitational slope deformation (DGSD) are common geological hazards in mountain belts worldwide. In the Italian central Apennines, kilometer-thick carbonate sedimentary sequences are cut by major active normal faults that shape the landscape, generating intermontane basins. Geomorphological observations suggest that the DGSDs are commonly located in fault footwalls.
View Article and Find Full Text PDFHow major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate.
View Article and Find Full Text PDFThe understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution.
View Article and Find Full Text PDFJ Geophys Res Solid Earth
January 2019
Recent Global Positioning System observations of major earthquakes such as the 2014 Chile megathrust show a slow preslip phase releasing a significant portion of the total moment (Ruiz et al., 2014, https://doi.org/10.
View Article and Find Full Text PDFDuring earthquake propagation, geologic faults lose their strength, then strengthen as slip slows and stops. Many slip-weakening mechanisms are active in the upper-mid crust, but healing is not always well-explained. Here we show that the distinct structure and rate-dependent properties of amorphous nanopowder (not silica gel) formed by grinding of quartz can cause extreme strength loss at high slip rates.
View Article and Find Full Text PDFThe safe application of geological carbon storage depends also on the seismic hazard associated with fluid injection. In this regard, we performed friction experiments using a rotary shear apparatus on precut basalts with variable degree of hydrothermal alteration by injecting distilled HO, pure CO, and HO + CO fluid mixtures under temperature, fluid pressure, and stress conditions relevant for large-scale subsurface CO storage reservoirs. In all experiments, seismic slip was preceded by short-lived slip bursts.
View Article and Find Full Text PDFMany earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes.
View Article and Find Full Text PDFRupture fronts can cause fault displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e.
View Article and Find Full Text PDFMelt produced by friction during earthquakes may act either as a coseismic fault lubricant or as a viscous brake. Here we estimate the dynamic shear resistance (tau(f)) in the presence of friction-induced melts from both exhumed faults and high-velocity (1.28 meters per second) frictional experiments.
View Article and Find Full Text PDFMost of our knowledge about co-seismic rupture propagation is derived from inversion and interpretation of strong-ground-motion seismograms, laboratory experiments on rock and rock-analogue material, or inferred from theoretical and numerical elastodynamic models. However, additional information on dynamic rupture processes can be provided by direct observation of faults exhumed at the Earth's surface. Pseudotachylytes (solidified friction-induced melts) are the most certain fault-rock indicator of seismicity on ancient faults.
View Article and Find Full Text PDFAn important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance.
View Article and Find Full Text PDF