Publications by authors named "Giulini A"

Orthopoxviruses (OPVs) have recently received increasing attention because of their potential use in bioterrorism and the occurrence of zoonotic OPV outbreaks, highlighting the need for the development of safe and cost-effective vaccines against smallpox and related viruses. In this respect, the production of subunit protein-based vaccines in transgenic plants is an attractive approach. For this purpose, the A27L immunogenic protein of vaccinia virus was expressed in tobacco using stable transformation of the nuclear or plastid genome.

View Article and Find Full Text PDF

The development of new generation vaccines is an imperative tool to counteract accidental or intended release of bio-threat agents, such as Bacillus anthracis, Yersinia pestis and variola virus, and to control natural outbreaks. In the past few years, numerous data accumulated on the immunogenicity and safety of plant-made vaccines against bio-security-related organisms. In addition, expression levels achieved for these antigenic proteins are practical for the production of sufficient material for large-scale vaccination programs.

View Article and Find Full Text PDF

In maize vivipary, the precocious germination of the seed while still attached to the ear, is the diagnostic phenotype of mutants, which are impaired in the biosynthesis or response to abscisic acid (ABA). Of the 15 genes so far described, 12 control specific steps in ABA biosynthesis, two mediate hormone response and one still has an undefined role. We have analyzed a collection of 25 independent vp isolates with the aim of determining the degree of mutational saturation that has so far been reached.

View Article and Find Full Text PDF

The pentatricopeptide repeat (PPR) family represents one of the largest gene families in plants, with >440 members annotated in Arabidopsis thaliana. PPR proteins are thought to have a major role in the regulation of posttranscriptional processes in organelles. Recent studies have shown that Arabidopsis PPR proteins play an essential, nonredundant role during embryogenesis.

View Article and Find Full Text PDF

The maize seed comprises two major compartments, the embryo and the endosperm, both originating from the double fertilization event. The embryogenetic process allows the formation of a well-differentiated embryonic axis, surrounded by a single massive cotyledon, the scutellum. The mature endosperm constitutes the bulk of the seed and comprises specific regions containing reserve proteins, complex carbohydrates, and oils.

View Article and Find Full Text PDF

Phyllotaxy describes the geometric pattern of leaves and flowers, and has intrigued botanists and mathematicians for centuries. How these patterns are initiated is poorly understood, and this is partly due to the paucity of mutants. Signalling by the plant hormone auxin appears to determine the site of leaf initiation; however, this observation does not explain how distinct patterns of phyllotaxy are initiated.

View Article and Find Full Text PDF

The shoot apical meristem (SAM), initially formed during embryogenesis, gives rise to the aboveground portion of the maize (Zea mays) plant. The shootless phenotype (sml) described here is caused by disruption of SAM formation due to the synergistic interaction of mutations at two genetic loci. Seedlings must be homozygous for both sml (shootmeristemless), and the unlinked dgr (distorted growth) loci for a SAM-less phenotype to occur.

View Article and Find Full Text PDF