We recently developed an atomic force microscopy-based protocol to use the roughness of the plasma membrane of erythrocytes (red blood cells, RBCs) as a morphological parameter, independently from the cell shape, to investigate the membrane-skeleton integrity in healthy and pathological cells. Here we apply the method to investigate a complex physiological phenomenon, the RBCs aging, that plays a major role in the regulation of the RBCs' turnover. The aging, monitored morphologically and biochemically, has been accelerated and modulated by preventing oxidative stresses as well as the effects of proteases and divalent cations, and by artificially consuming the intracellular adenosine triphosphate.
View Article and Find Full Text PDFHuman erythrocytes (RBCs), stored at 4 degrees C under nominal absence of external energy sources and calcium ions, show a gradual decrease in membrane roughness (R(rms)) at the end of which the appearance of morphological phenomena (spicules, vesicles and spherocytes) is observed on the cell membrane, phenomena that can mainly be ascribed to the ATP-dependent disconnection of the cortical cytoskeleton from the lipid bilayer. After depletion of the intracellular energy sources obtained under the extreme conditions chosen, treatment with a minimal rejuvenation solution makes the following remarks possible: (i) RBCs are able to regenerate adenosine triphosphate (ATP) and 2,3-bisphosphoglycerate only up to 4 days of storage at 4 degrees C, whereas from the eighth day energy stocks cannot be replenished because of a disorder in the transmembrane mechanisms of transport; (ii) the RBCs' roughness may be restored to the initial value (i.e.
View Article and Find Full Text PDFThe interaction of the cytotoxic metals cadmium, zinc, and lead with pancreatic cells was studied by atomic force/lateral Force microscopy (AFM/LFM), an approach that provides both topographic (with nanometer scale lateral resolution) and chemical information on the membrane. Different morphological modifications of the overall cell shape and roughness took place as consequence of 100 muM metal-dependent treatment. Furthermore, after exposure to Cd(Cl(2)) and Zn(Cl(2)), but not Pb(Cl(2)), the LFM images revealed several areas of the cell's surface showing lateral friction contrasts that have been interpreted as marker of different alterations of the cell physiology induced by the metal loading.
View Article and Find Full Text PDF