Publications by authors named "Giuliano Benenti"

We prove analytically the ballistic thermal rectification effect (BTRE) in the Corbino disk characterized by an annular shape. We derive the thermal rectification efficiency (RE) and show that it can be expressed as the product of two independent functions, the first dependent on the temperatures of the heat baths and the second on the system's geometry. It follows that a perfect BTRE can be reached with the increase of the ratios of the heat baths' temperatures and of the radius of the outer edge to the inner edge of the disk.

View Article and Find Full Text PDF

Quantum walks have proven to be a universal model for quantum computation and to provide speed-up in certain quantum algorithms. The discrete-time quantum walk (DTQW) model, among others, is one of the most suitable candidates for circuit implementation due to its discrete nature. Current implementations, however, are usually characterized by quantum circuits of large size and depth, which leads to a higher computational cost and severely limits the number of time steps that can be reliably implemented on current quantum computers.

View Article and Find Full Text PDF

The generation of a large amount of entanglement is a necessary condition for a quantum computer to achieve quantum advantage. In this paper, we propose a method to efficiently generate pseudo-random quantum states, for which the degree of multipartite entanglement is nearly maximal. We argue that the method is optimal, and use it to benchmark actual superconducting (IBM's ) and ion trap (IonQ's ) quantum processors.

View Article and Find Full Text PDF

We consider a micromaser model of a quantum battery, where the battery is a single mode of the electromagnetic field in a cavity, charged via repeated interactions with a stream of qubits, all prepared in the same non-equilibrium state, either incoherent or coherent, with the matter-field interaction modeled by the Jaynes-Cummings model. We show that the coherent protocol is superior to the incoherent one, in that an effective pure steady state is achieved for generic values of the model parameters. Finally, we supplement the above collision model with cavity losses, described by a Lindblad master equation.

View Article and Find Full Text PDF

Quantum thermal machines can perform useful tasks, such as delivering power, cooling, or heating. In this work, we consider hybrid thermal machines, that can execute more than one task simultaneously. We characterize and find optimal working conditions for a three-terminal quantum thermal machine, where the working medium is a quantum harmonic oscillator, coupled to three heat baths, with two of the couplings driven periodically in time.

View Article and Find Full Text PDF

Characterizing and mitigating errors in current noisy intermediate-scale devices is important to improve the performance of the next generation of quantum hardware. To investigate the importance of the different noise mechanisms affecting quantum computation, we performed a full quantum process tomography of single qubits in a real quantum processor in which echo experiments are implemented. In addition to the sources of error already included in the standard models, the obtained results show the dominant role of coherent errors, which we practically corrected by inserting random single-qubit unitaries in the quantum circuit, significantly increasing the circuit length over which quantum computations on actual quantum hardware produce reliable results.

View Article and Find Full Text PDF

We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state. We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics. Furthermore, this rate is given by the Kolmogorov-Sinai entropy, which characterizes the dynamical complexity of classical motion.

View Article and Find Full Text PDF

A dynamical model of a highly efficient heat engine is proposed, where an applied temperature difference maintains the motion of particles around the circuit consisting of two asymmetric narrow channels, in one of which the current flows against the applied thermodynamic forces. Numerical simulations and linear-response analysis suggest that, in the absence of frictional losses, the Carnot efficiency can be achieved in the thermodynamic limit.

View Article and Find Full Text PDF

A van der Waals (vdW) heterostructure, can be used in efficient heat management, due to its promising anisotropic thermal transport feature, with high heat conductance in one direction and low conductance in the rest. A carbon nanotube (CNT) bundle, can be used as one of the most feasible vdW heterostructures in a wide range of nanoscale devices. However, detailed investigations of heat transport in CNT bundles are still lacking.

View Article and Find Full Text PDF

We study the statistical distribution of the ergotropy and of the efficiency of a single-qubit battery ad of a single-qubit Otto engine, respectively fueled by random collisions. The single qubit, our working fluid, is assumed to exchange energy with two reservoirs: a nonequilibrium "hot" reservoir and a zero-temperature cold reservoir. The interactions between the qubit and the reservoirs are described in terms of a collision model of open system dynamics.

View Article and Find Full Text PDF

We investigate the properties of the blackbody spectrum by direct numerical solution of the classical equations of motion of a one-dimensional model that contains the essential general features of the field-matter interaction. Our results, which do not rely on any statistical assumption, show that the classical blackbody spectrum exhibits remarkable properties: (i) a quasistationary state characterized by scaling properties, (ii) consistency with the Stefan-Boltzmann law, and (iii) a high-frequency cutoff. Our Letter is a preliminary step in the understanding of statistical properties of infinite-dimensional systems.

View Article and Find Full Text PDF

Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quantum processors. Our results demonstrate that quantum computing of dynamical localization may become a convenient tool for evaluating advances in quantum hardware performances.

View Article and Find Full Text PDF

The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered correlator (OTOC) in classically nonchaotic systems [E. B.

View Article and Find Full Text PDF

We consider the quality factor Q, which quantifies the trade-off between power, efficiency, and fluctuations in steady-state heat engines modeled by dynamical systems. We show that the nonlinear scattering theory, in both classical and quantum mechanics, sets the bound Q=3/8 when approaching the Carnot efficiency. On the other hand, interacting, nonintegrable, and momentum-conserving systems can achieve the value Q=1/2, which is the universal upper bound in linear response.

View Article and Find Full Text PDF

The occurrence of an inverse current, where the sign of the induced current is opposite to the applied force, is a highly counterintuitive phenomenon. We show that inverse currents in coupled transport (ICC) of energy and particle can occur in a one-dimensional interacting Hamiltonian system when its equilibrium state is perturbed by coupled thermodynamic forces. This seemingly paradoxical result is possible due to the self-organization occurring in the system in response to the applied forces.

View Article and Find Full Text PDF

We study the rectification of heat current in an XXZ chain segmented in two parts. We model the effect of the environment with Lindblad heat baths. We show that in our system, rectification is large for strong interactions in half of the chain and if one bath is at a cold enough temperature.

View Article and Find Full Text PDF

In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat-to-work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.

View Article and Find Full Text PDF

We study the rectification of the spin current in XXZ chains segmented in two parts, each with a different anisotropy parameter. Using exact diagonalization and a matrix product state algorithm, we find that a large rectification (of the order of 10^{4}) is attainable even using a short chain of N=8 spins, when one-half of the chain is gapless while the other has a large enough anisotropy. We present evidence of diffusive transport when the current is driven in one direction and of a transition to an insulating behavior of the system when driven in the opposite direction, leading to a perfect diode in the thermodynamic limit.

View Article and Find Full Text PDF

Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size.

View Article and Find Full Text PDF

We introduce a minimalistic quantum motor for coupled energy and particle transport. The system is composed of two spins, each coupled to a different bath and to a particle which can move on a ring consisting of three sites. We show that the energy flowing from the baths to the system can be partially converted to perform work against an external driving, even in the presence of moderate dissipation.

View Article and Find Full Text PDF

A method for computing the thermopower in interacting systems is proposed. This approach, which relies on Monte Carlo simulations, is illustrated first for a diatomic chain of hard-point elastically colliding particles and then in the case of a one-dimensional gas with (screened) Coulomb interparticle interaction. Numerical simulations up to N>10^{4} particles confirm the general theoretical arguments for momentum-conserving systems and show that the thermoelectric figure of merit increases linearly with the system size.

View Article and Find Full Text PDF

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand.

View Article and Find Full Text PDF

We study in momentum-conserving systems, how nonintegrable dynamics may affect thermal transport properties. As illustrating examples, two one-dimensional (1D) diatomic chains, representing 1D fluids and lattices, respectively, are numerically investigated. In both models, the two species of atoms are assigned two different masses and are arranged alternatively.

View Article and Find Full Text PDF

We show that the number of harmonics of the Wigner function, recently proposed as a measure of quantum complexity, can also be used to characterize quantum phase transitions. The nonanalytic behavior of this quantity in the neighborhood of a quantum phase transition is illustrated by means of the Dicke model and is compared to two well-known measures of the (in)stability of quantum motion: the quantum Loschmidt echo and fidelity.

View Article and Find Full Text PDF

We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point elastically colliding particles where the total momentum is the only relevant conserved quantity.

View Article and Find Full Text PDF