Proc Natl Acad Sci U S A
October 2017
Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution.
View Article and Find Full Text PDFA fusion construct between Citrine (a YFP variant) and human ferritin (H-chain) was recently shown to form supramolecular assemblies of micrometer size when expressed in mammalian cells. The assembly process is driven by weak hydrophobic interactions leading to dimerization of YFP. Protein assembly could be suppressed at the gene level by mutation in the primary sequence of the construct.
View Article and Find Full Text PDFA genetically encoded system for expression of supramolecular protein assemblies (SMPAs) based on a fusion construct between ferritin and citrine (YFP) was transferred from a mammalian to a bacterial host. The assembly process is revealed to be independent of the expression host, while dimensions and level of order of the assembled structures were influenced by the host organism. An additional level of interactions, namely, coalescence between the preformed SMPAs, was observed during the purification process.
View Article and Find Full Text PDFProtein structure investigations are usually carried out in vitro under conditions far from their native environment in the cell. Differences between in-cell and in vitro structures of proteins can be generated by crowding effects, local pH changes, specific and nonspecific protein and ligand binding events, and chemical modifications. Double electron-electron resonance (DEER), in conjunction with site-directed spin-labeling, has emerged in the past decade as a powerful technique for exploring protein conformations in frozen solutions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2014
Genetically encoded supramolecular protein assemblies (SMPAs) are induced to form in living cells by combination of distinct self-assembly properties. A single fusion construct contains genes encoding the heavy chain (H) of human ferritin and the citrine fluorescent protein, the latter exposing a weak dimerization interface, as well as a nuclear localization signal. Upon expression in HeLa cells, in vivo confocal fluorescence and differential interference contrast imaging revealed extended SMPA structures exclusively in the nuclei.
View Article and Find Full Text PDFNoble metal nanostructures supporting localized surface plasmons (SPs) have been widely applied to chemical and biological sensing. Changes in the refractive index near the nanostructures affect the SP extinction band, making localized surface plasmon resonance (LSPR) spectroscopy a convenient tool for studying biological interactions. Carbohydrate-protein interactions are of major importance in living organisms; their study is crucial for understanding of basic biological processes and for the construction of biosensors for diagnostics and drug development.
View Article and Find Full Text PDFInteractions of peptides and proteins with inorganic surfaces are important to both natural and artificial systems; however, a detailed understanding of such interactions is lacking. In this study, we applied new approaches to quantitatively measure the binding of amino acids and proteins to gold surfaces. Real-time surface plasmon resonance (SPR) measurements showed that TEM1-β-lactamase inhibitor protein (BLIP) interacts only weakly with Au nanoparticles (NPs).
View Article and Find Full Text PDFDps (DNA-binding proteins from starved cells) proteins belong to a widespread bacterial family of proteins expressed under nutritional and oxidative stress conditions. In particular, Dps proteins protect DNA against Fenton-mediated oxidative stress, as they catalyze iron oxidation by hydrogen peroxide at highly conserved ferroxidase centers and thus reduce significantly hydroxyl radical production. This work investigates the possible generation of intraprotein radicals during the ferroxidation reaction by Escherichia coli and Listeria innocua Dps, two representative members of the family.
View Article and Find Full Text PDFA comparative analysis of the magnetic properties of iron oxide nanoparticles grown in the cavity of the DNA-binding protein from starved cells of the bacterium Listeria innocua, LiDps, and of its triple-mutant lacking the catalytic ferroxidase centre, LiDps-tm, is presented. TEM images and static and dynamic magnetic and electron magnetic resonance (EMR) measurements reveal that, under the applied preparation conditions, namely alkaline pH, high temperature (65 degrees C), exclusion of oxygen, and the presence of hydrogen peroxide, maghemite and/or magnetite nanoparticles with an average diameter of about 3 nm are mineralised inside the cavities of both LiDps and LiDps-tm. The magnetic nanoparticles (MNPs) thus formed show similar magnetic properties, with superparamagnetic behaviour above 4.
View Article and Find Full Text PDFElucidating pore function at the 3-fold channels of 12-subunit, microbial Dps proteins is important in understanding their role in the management of iron/hydrogen peroxide. The Dps pores are called "ferritin-like" because of the structural resemblance to the 3-fold channels of 24-subunit ferritins used for iron entry and exit to and from the protein cage. In ferritins, negatively charged residues lining the pores generate a negative electrostatic gradient that guides iron ions toward the ferroxidase centers for catalysis with oxidant and destined for the mineralization cavity.
View Article and Find Full Text PDFFerritins from the liver and spleen of the cold-adapted Antarctic teleosts Trematomus bernacchii and Trematomus newnesi have been isolated and characterized. Interestingly, only H- and M-chains are expressed and no L-chains. The H-chains contain the conserved ferroxidase center residues while M-chains harbor both the ferroxidase center and the micelle nucleation site ligands.
View Article and Find Full Text PDFThe stability of the dodecameric Listeria monocytogenes Dps has been compared with that of the Listeria innocua protein. The two proteins differ only in two amino acid residues that form an intersubunit salt-bridge in L. innocua Dps.
View Article and Find Full Text PDF