Publications by authors named "Giuliana Lo Presti"

Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (, , alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled.

View Article and Find Full Text PDF

To evaluate the association between radiomic features (RFs) extracted from F-FDG PET/CT ( F-FDG-PET) with progression-free survival (PFS) and overall survival (OS) in diffuse large-B-cell lymphoma (DLBCL) patients eligible to first-line chemotherapy. DLBCL patients who underwent F-FDG-PET prior to first-line chemotherapy were retrospectively analyzed. RFs were extracted from the lesion showing the highest uptake.

View Article and Find Full Text PDF

Emerging evidence indicates that chemoresistance is closely related to altered metabolism in cancer. Here, we hypothesized that distinct metabolic gene expression profiling (GEP) signatures might be correlated with outcome and with specific fluorodeoxyglucose positron emission tomography (FDG-PET) radiomic profiles in diffuse large B-cell lymphoma (DLBCL). We retrospectively analyzed a discovery cohort of 48 consecutive patients with DLBCL treated at our center with standard first-line chemoimmunotherapy by performing targeted GEP (T-GEP)- and FDG-PET radiomic analyses on the same target lesions at baseline.

View Article and Find Full Text PDF

Background: Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs.

Methods: This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy.

View Article and Find Full Text PDF

Background: No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed.

View Article and Find Full Text PDF

Background And Purpose: Radiomics enables the mining of quantitative features from medical images. The influence of the radiomic feature extraction software on the final performance of models is still a poorly understood topic. This study aimed to investigate the ability of radiomic features extracted by two different radiomic platforms to predict clinical outcomes in patients treated with radiosurgery for brain metastases from non-small cell lung cancer.

View Article and Find Full Text PDF

Objective: Deploying an automatic segmentation model in practice should require rigorous quality assurance (QA) and continuous monitoring of the model's use and performance, particularly in high-stakes scenarios such as healthcare. Currently, however, tools to assist with QA for such models are not available to AI researchers. In this work, we build a deep learning model that estimates the quality of automatically generated contours.

View Article and Find Full Text PDF

Radiomics uses high-dimensional sets of imaging features to predict biological characteristics of tumors and clinical outcomes. The choice of the algorithm used to analyze radiomic features and perform predictions has a high impact on the results, thus the identification of adequate machine learning methods for radiomic applications is crucial. In this study we aim to identify suitable approaches of analysis for radiomic-based binary predictions, according to sample size, outcome balancing and the features-outcome association strength.

View Article and Find Full Text PDF