Publications by authors named "Giulia Vico"

Crop yields are affected by hydroclimatic and edaphic conditions, but their interacting roles are often neglected when assessing crop yields at the regional scale. Moreover, often used hydroclimatic conditions such as precipitation and temperature are not as physiologically linked to primary production and yields as actual evapotranspiration. Using statistical models, we quantified the combined effects of edaphic and hydroclimatic conditions on county yields of irrigated rice and rainfed corn, soybean, and spring and winter wheat in the USA (2000-2019).

View Article and Find Full Text PDF

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America.

View Article and Find Full Text PDF

Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations.

View Article and Find Full Text PDF

Perennial grains, such as the intermediate wheatgrass (Thinopyrum intermedium) (IWG), may reduce negative environmental effects compared to annual grain crops. Their permanent, and generally larger, root systems are likely to retain nitrogen (N) better, decreasing harmful losses of N and improving fertilizer N use efficiency, but there have been no comprehensive N fertilizer recovery studies in IWG to date. We measured fertilizer N recovery with stable isotope tracers in crop biomass and soil, soil N mineralization and nitrification, and nitrate leaching in IWG and annual wheat in a replicated block field experiment.

View Article and Find Full Text PDF

Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.

View Article and Find Full Text PDF

Intercropping of two or more species on the same piece of land can enhance biodiversity and resource use efficiency in agriculture. Traditionally, intercropping systems have been developed and improved by empirical methods within a specific local context. To support the development of promising intercropping systems, the individual species that are part of an intercrop can be subjected to breeding.

View Article and Find Full Text PDF

Stomatal optimization models can improve estimates of water and carbon fluxes with relatively low complexity, yet there is no consensus on which formulations are most appropriate for ecosystem-scale applications. We implemented three existing analytical equations for stomatal conductance, based on different water penalty functions, in a big-leaf comparison framework, and determined which optimization principles were most consistent with flux tower observations from different biomes. We used information theory to dissect controls of soil water supply and atmospheric demand on evapotranspiration in wet to dry conditions and to quantify missing or inadequate information in model variants.

View Article and Find Full Text PDF

Climate change is predicted to hamper crop production due to precipitation deficits and warmer temperatures inducing both water stress and increasing herbivory due to more abundant insect pests. Consequently, crop yields will be impacted simultaneously by abiotic and biotic stressors. Extensive yield losses due to such climate change stressors might, however, be mitigated by ecosystem services such as insect pollination.

View Article and Find Full Text PDF

Perennial crops have been proposed as a more sustainable alternative to annual crops, because they have extended growing seasons, continuous ground cover, reduced nutrient leakage, and sequester more carbon in the soils than annual crops. One example is intermediate wheatgrass (Thinopyrum intermedium), a perennial crop that has been used as a cool-season forage throughout the USA and Canada and also across its native range in Eurasia. Since the 1980's, intermediate wheatgrass has been under domestication to improve seed fertility and grain yield.

View Article and Find Full Text PDF

Under future climates, leaf temperature (T ) will be higher and more variable. This will affect plant carbon (C) balance because photosynthesis and respiration both respond to short-term (subdaily) fluctuations in T and acclimate in the longer term (days to months). This study asks the question: To what extent can the potential and speed of photosynthetic acclimation buffer leaf C gain from rising and increasing variable T ? We quantified how increases in the mean and variability of growth temperature affect leaf performance (mean net CO assimilation rates, A ; its variability; and time under near-optimal photosynthetic conditions), as mediated by thermal acclimation.

View Article and Find Full Text PDF

Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012-2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a "common garden" thought experiment, how existing trait-based or response-based isohydricity metrics can be confounded by these environmental variations, leading to Type-1 (false positive) and Type-2 (false negative) errors; and (d) advocate for the use of model-based approaches for formulating alternate classification schemes.

View Article and Find Full Text PDF

Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, for example, isohydry-anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, the consistency and predictive value of such classifications need to be carefully examined. Here, we outline the basis for a systematic classification of plant drought responses that accounts for both environmental conditions and functional traits.

View Article and Find Full Text PDF

The sustainable management of unwanted vegetation in agricultural fields through integrated weed control strategies requires detailed knowledge about the maternal formation of primary seed dormancy, to support the prediction of seedling emergence dynamics. This knowledge is decisive for the timing of crop sowing and nonchemical weed control measures. Studies in controlled environments have already demonstrated that thermal conditions and, to some extent, water availability during seed set and maturation has an impact on the level of dormancy.

View Article and Find Full Text PDF

Stochastic weather generators can generate very long time series of weather patterns, which are indispensable in earth sciences, ecology and climate research. Yet, both their potential and limitations remain largely unclear because past research has typically focused on eclectic case studies at small spatial scales in temperate climates. In addition, stochastic multi-site algorithms are usually not publicly available, making the reproducibility of results difficult.

View Article and Find Full Text PDF

Perennial plants allocate more resources belowground, thus sustaining important ecosystem services. Hence, shifting from annual to perennial crops has been advocated towards a more sustainable agriculture. Nevertheless, wild perennial species have lower seed production than selected annuals, raising the questions of whether there is a fundamental trade-off between reproductive effort and life span, and whether such trade-off can be overcome through selection.

View Article and Find Full Text PDF

Irrigation represents one of the main strategies to enhance and stabilize agricultural productivity, by mitigating the effects of rainfall vagaries. In the face of the projected growth in population and in biofuel demands, as well as shifts in climate and dietary habits, a more sustainable management of water resources in agroecosystems is needed. The field of ecohydrology, traditionally focusing on natural ecosystems, has the potential to offer the necessary quantitative tools to assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing.

View Article and Find Full Text PDF

C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework.

View Article and Find Full Text PDF

Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)).

View Article and Find Full Text PDF

Background And Aims: Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (g(s)) at the expense of lowering CO(2) uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when g(s) declines.

View Article and Find Full Text PDF

• Understory plants are subjected to highly intermittent light availability and their leaf gas exchanges are mediated by delayed responses of stomata and leaf biochemistry to light fluctuations. In this article, the patterns in stomatal delays across biomes and plant functional types were studied and their effects on leaf carbon gains and water losses were quantified. • A database of more than 60 published datasets on stomatal responses to light fluctuations was assembled.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session92jv007qgrpf8jv7c0cg63prmrlitsh4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once