The two-electron electrocatalytic oxygen reduction reaction (ORR) to hydrogen peroxide (HO) is a valuable alternative to the more conventional and energy-intensive anthraquinone process. From a circularity viewpoint, metal-free catalysts constitute a sustainable alternative for the process. In particular, lightweight hetero-doped C-materials are cost-effective and easily scalable samples that replace - more and more frequently - the use of critical raw elements in the preparation of highly performing (electro)catalysts.
View Article and Find Full Text PDFChempluschem
July 2024
This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages.
View Article and Find Full Text PDFTannery sludge, a challenging waste, was utilized as a substrate for the production of Short-Chain Fatty Acids (SCFAs) through a series of six thermophilic Continuous Stirred-Tank Reactor runs. The sludge was subjected to a mild thermal pre-treatment and incorporated zeolites (chabazite in run II, and clinoptilolite in run III) in the acidification process. Results highlighted zeolites' impact on chromium concentration and the SCFAs/COD ratio.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2024
The study focuses on an Italian composting plant and aims to investigate the impact of the presence of plastic impurities in the collected biowaste on the environmental and economic performance of the plant. The study is divided into two main steps: firstly, a material flow analysis was conducted to quantify the number of impurities (e.g.
View Article and Find Full Text PDFHydrogen peroxide (H O ) electrosynthesis via the 2e Oxygen Reduction Reaction (ORR) represents a highly challenging, environmentally friendly and cost-effective alternative to the current anthraquinone-based technology. Various lightweight element hetero-doped carbon nanostructures are promising and cheap metal-free electrocatalysts for H O synthesis, particularly those containing O-functionalities. The exact role of O-containing functional groups as electroactive sites for the process remains debated if not highly controversial.
View Article and Find Full Text PDFInvited for this month's cover are collaborating teams from academia-the French ICPEES and IS2M of Centre national de la recherche scientifique (CNRS) and the Italian ICCOM of Consiglio Nazionale delle Ricerche (CNR)-and industry with the participation of the ORANO group. The cover picture shows a CO -to-CH process promoted by nickel nanoparticles supported on depleted uranium oxide under exceptionally low temperature values or autothermal conditions. The Research Article itself is available at 10.
View Article and Find Full Text PDFNi-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO hydrogenation to substituted natural gas (SNG; CH ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UO stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process.
View Article and Find Full Text PDFSolvent-assisted ligand incorporation (SALI) of the ditopic linker 5-carboxy-3-(4-carboxybenzyl)thiazolium bromide [()Br] into the zirconium metal-organic framework [ZrO(OH)(HO)(TBAPy), where NU = Northwestern University and HTBAPy = 1,3,6,8-tetrakis(-benzoic-acid)pyrene], led to the SALIed material of minimal formula [ZrO(OH)(HO)(TBAPy)()]Br. has been thoroughly characterized in the solid state. As confirmed by powder X-ray diffraction, this material keeps the same three-dimensional architecture of and the dicarboxylic extra linker bridges adjacent [Zr] nodes 8 Å far apart along the crystallographic -axis.
View Article and Find Full Text PDFThere is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics ( AlO, SiO, TiO, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis.
View Article and Find Full Text PDFIn this work, we joined highly Ni-loaded γ-Al O composites, straightforwardly prepared by impregnation methods, with an induction heating setup suited to control, almost in real-time, any temperature swing at the catalyst sites (i. e., "hot spots" ignition) caused by an exothermic reaction at the heart of the power-to-gas (P2G) chain: CO methanation.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2020
The rational design and synthesis of covalent triazine frameworks (CTFs) from defined dicyano-aryl building blocks or their binary mixtures is of fundamental importance for a judicious tuning of the chemico-physical and morphological properties of this class of porous organic polymers. In fact, their gas adsorption capacity and their performance in a variety of catalytic transformations can be modulated through an appropriate selection of the building blocks. In this contribution, a set of five CTFs (-) have been prepared under classical ionothermal conditions from single dicyano-aryl or heteroaryl systems.
View Article and Find Full Text PDFThe four zinc(II) mixed-ligand metal-organic frameworks (MIXMOFs) Zn(BPZ)(BPZNO), Zn(BPZ)(BPZNH), Zn(BPZNO)(BPZNH), and Zn(BPZ)(BPZNO)(BPZNH) (HBPZ = 4,4'-bipyrazole; HBPZNO = 3-nitro-4,4'-bipyrazole; HBPZNH = 3-amino-4,4'-bipyrazole) were prepared through solvothermal routes and fully investigated in the solid state. Isoreticular to the end members Zn(BPZ) and Zn(BPZX) (X = NO, NH), they are the first examples ever reported of (pyr)azolate MIXMOFs. Their crystal structure is characterized by a three-dimensional open framework with one-dimensional square or rhombic channels decorated by the functional groups.
View Article and Find Full Text PDFA drug delivery system (DDS) for combined therapy, based on a short oxidized multiwalled carbon nanotube, is reported. It was prepared exploiting a synthetic approach which allowed loading of two drugs, doxorubicin and metformin, the targeting agent biotin and a radiolabeling tag, to enable labeling with Ga-68 or Cu-64 in order to perform an extensive biodistribution study by PET/CT. The DDS biodistribution profile changes with different administration methods.
View Article and Find Full Text PDFThe last few years have witnessed a wonderful technological renaissance that boosted the development of carbon-based nanomaterials (CNMs) doped with light heteroelements and featuring hierarchical porous architectures as valuable metal-free catalysts for a number of key industrial transformations. To date, several approaches to their synthesis have been developed, although many of them lack any real control of the final doping and composition. In contrast, chemical functionalization offers a unique and powerful tool to tailor CNMs' chemical and electronic surface properties as a function of their downstream application in catalysis.
View Article and Find Full Text PDFThe metal-organic frameworks (MOFs) M(BPZNO ) (M=Co, Cu, Zn; H BPZNO =3-nitro-4,4'-bipyrazole) were prepared through solvothermal routes and were fully investigated in the solid state. They showed good thermal stability both under a N atmosphere and in air, with decomposition temperatures peaking up to 663 K for Zn(BPZNO ). Their crystal structure is characterized by 3D networks with square (M=Co, Zn) or rhombic (M=Cu) channels decorated by polar NO groups.
View Article and Find Full Text PDFThe selective oxidation of H₂S to elemental sulfur was carried out on a NiS₂/SiC catalyst under reaction temperatures between 40 and 80 °C using highly H₂S enriched effluents (from 0.5 to 1 vol.%).
View Article and Find Full Text PDFThe progress of the chemistry of carbon nanotubes (CNT) and graphene derivatives [mainly graphene oxide (GO)] has produced a number of technologically advanced drug delivery systems (DDS) that have been used in the field of nanomedicine, mostly in studies related to oncology. However, such a demanding field of research requires continuous improvements in terms of efficiency, selectivity and versatility. The loading of two, or more, bioactive components on the same nanoparticle offers new possibilities for treating cancer, efficiently addressing issues related both to biodistribution and pharmacokinetics.
View Article and Find Full Text PDFThis paper describes the exohedral N-decoration of multiwalled carbon nanotubes (MWCNTs) with NH-aziridine groups via [2 + 1] cycloaddition of a tert-butyl-oxycarbonyl nitrene followed by controlled thermal decomposition of the cyclization product. The chemical grafting with N-containing groups deeply modifies the properties of the starting MWCNTs, generating new surface microenvironments with specific base (Brønsted) and electronic properties. Both of these features translate into a highly versatile single-phase heterogeneous catalyst (MW@N) with remarkable chemical and electrochemical performance.
View Article and Find Full Text PDFTo demonstrate the potential of azido-substituted carbon nanotubes for application in nanomedicine, multiple-decorated oxidized multi-walled carbon nanotubes as drug delivery systems have been synthesized. These DDSs were able to carry doxorubicin inside breast MCF-7 cancer cell lines resulting in an enhanced cytotoxic effect with respect to the free drug. Decoration of the carbon nanotubes was accomplished through both covalent and non-covalent approaches: versatile click reactions and π-π interactions were exploited.
View Article and Find Full Text PDFA series of azido-dyes were synthesized through Knoevenagel reactions of an azido-BODIPY with aromatic aldehydes. The nature of the substituents allowed the fine tuning of their spectroscopic properties. The dyes were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs), bearing terminal triple bond groups, by CuAAC reactions, affording fluorescent materials.
View Article and Find Full Text PDFInvited for this month's cover are collaborators from four different Italian research groups, three at the National Research Council (ICCOM, IFAC, and ISOF) and one at the University of Florence. The cover picture shows a representative cartoon of engineered 1D carbon nanomaterials and their effective surface decoration with (bio)molecules and fluorescent markers. Read the full text of the article at 10.
View Article and Find Full Text PDFEfforts have been made in recent years to develop novel functionalisation protocols aimed at imparting multimodality and improved properties to complex carbon-based nanostructures. The incorporation of cleavable bonds to the nanomaterial surface for the controlled release (or exchange) of specific molecules under appropriate chemical and biological settings is relatively unexplored. The design and synthesis of a hetero-bifunctional linker joining a "cleavable" disulfide moiety for the covalent anchoring of a wide range of thiol end-capped (bio)molecules and a "clickable" terminal acetylene group is described.
View Article and Find Full Text PDFNeutral Y(III) dialkyl complexes supported by tridentate N(-) ,N,N monoanionic methylthiazole- or benzothiazole-amidopyridinate ligands have been prepared and completely characterized. Studies on their stability in solution revealed progressive rearrangement of the coordination sphere in the benzothiazole-containing system through an unprecedented metal-to-ligand alkyl migration and subsequent thiazole ring opening. Attempts to synthesize hydrido species from the dialkyl precursor led to the generation of a dimeric yttrium species stabilized by a trianionic N(-) ,N,N(-) ,S(-) ligand as the result of metal-to-ligand hydride migration with chemoselective thiazole ring opening and subsequent dimerization through intermolecular addition of the residual YH group to the imino fragment of a second equivalent of the ring-opened intermediate.
View Article and Find Full Text PDF