Publications by authors named "Giulia Ruzzene"

Networks of coupled nonlinear oscillators allow for the formation of nontrivial partially synchronized spatiotemporal patterns, such as chimera states, in which there are coexisting coherent (synchronized) and incoherent (desynchronized) domains. These complementary domains form spontaneously, and it is impossible to predict where the synchronized group will be positioned within the network. Therefore, possible ways to control the spatial position of the coherent and incoherent groups forming the chimera states are of high current interest.

View Article and Find Full Text PDF

We numerically study a network of two identical populations of identical real-valued quadratic maps. Upon variation of the coupling strengths within and across populations, the network exhibits a rich variety of distinct dynamics. The maps in individual populations can be synchronized or desynchronized.

View Article and Find Full Text PDF

We propose a method to control chimera states in a ring-shaped network of nonlocally coupled phase oscillators. This method acts exclusively on the network's connectivity. Using the idea of a pacemaker oscillator, we investigate which is the minimal action needed to control chimeras.

View Article and Find Full Text PDF

We study two-layer networks of identical phase oscillators. Each individual layer is a ring network for which a non-local intra-layer coupling leads to the formation of a chimera state. The number of oscillators and their natural frequencies is in general different across the layers.

View Article and Find Full Text PDF

Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks.

View Article and Find Full Text PDF