KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover.
View Article and Find Full Text PDFEpigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy.
View Article and Find Full Text PDFIn the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants.
View Article and Find Full Text PDF