Anorexia nervosa (AN) is an eating disorder (ED) that has seen an increase in its incidence in the last thirty years. Compared to other psychosomatic disorders, ED can be responsible for many major medical complications, moreover, in addition to the various systemic impairments, patients with AN undergo morphological and physiological changes affecting the cerebral cortex. Through immunohistochemical studies on portions of postmortem human brain of people affected by AN and healthy individuals, and western blot studies on leucocytes of young patients and healthy controls, this study investigated the role in the afore-mentioned processes of altered redox state.
View Article and Find Full Text PDFAims: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs.
View Article and Find Full Text PDFUnlabelled: Aneuploidy is a hallmark of cancer with tissue-specific prevalence patterns that suggest it plays a driving role in cancer initiation and progression. However, the contribution of aneuploidy to tumorigenesis depends on both cellular and genomic contexts. Whole-genome duplication (WGD) is a common macroevolutionary event that occurs in more than 30% of human tumors early in tumorigenesis.
View Article and Find Full Text PDFCells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations.
View Article and Find Full Text PDFAdaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious.
View Article and Find Full Text PDFChromosome segregation relies on centromeres, yet their repetitive DNA is often prone to aberrant rearrangements under pathological conditions. Factors that maintain centromere integrity to prevent centromere-associated chromosome translocations are unknown. Here, we demonstrate the importance of the centromere-specific histone H3 variant CENP-A in safeguarding DNA replication of alpha-satellite repeats to prevent structural aneuploidy.
View Article and Find Full Text PDFAneuploidy is the condition of having an imbalanced karyotype, which is associated with tumor initiation, evolution, and acquisition of drug-resistant features, possibly by generating heterogeneous populations of cells with distinct genotypes and phenotypes. Multicellular eukaryotes have therefore evolved a range of extrinsic and cell-autonomous mechanisms for restraining proliferation of aneuploid cells, including activation of the tumor suppressor protein p53. However, accumulating evidence indicates that a subset of aneuploid cells can escape p53-mediated growth restriction and continue proliferating .
View Article and Find Full Text PDFProgression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target.
View Article and Find Full Text PDFThe distinct states of pluripotency in the pre- and post-implantation embryo can be captured in vitro as naive and primed pluripotent stem cell cultures, respectively. The study and application of the naive state remains hampered, particularly in humans, partially due to current culture protocols relying on extraneous undefined factors such as feeders. Here we performed a small-molecule screen to identify compounds that facilitate chemically defined establishment and maintenance of human feeder-independent naive embryonic (FINE) stem cells.
View Article and Find Full Text PDFEssential genes are classically defined as required for cellular viability and reproductive success. Despite this deceptively simple definition, several lines of evidence suggest that gene essentiality is instead a conditional trait. Indeed, gene essentiality has been shown to depend on the environmental and genetic context as well as the variable ability of cells to acquire adaptive mutations to survive inactivation of seemingly essential genes.
View Article and Find Full Text PDFThe mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes).
View Article and Find Full Text PDFThe spatial organization of the genome is enigmatic. Direct evidence of physical contacts between chromosomes and their visualization at nanoscale resolution has been limited. We used superresolution microscopy to demonstrate that ribosomal DNA (rDNA) can form linkages between chromosomes.
View Article and Find Full Text PDFGut microbes live in symbiosis with their hosts, but how mutualistic animal-microbe interactions emerge is not understood. By adaptively evolving the opportunistic fungal pathogen in the mouse gastrointestinal tract, we selected strains that not only had lost their main virulence program but also protected their new hosts against a variety of systemic infections. This protection was independent of adaptive immunity, arose as early as a single day postpriming, was dependent on increased innate cytokine responses, and was thus reminiscent of "trained immunity.
View Article and Find Full Text PDFUnderstanding how cells acquire genetic mutations is a fundamental biological question with implications for many different areas of biomedical research, ranging from tumor evolution to drug resistance. While karyotypic heterogeneity is a hallmark of cancer cells, few mutations causing chromosome instability have been identified in cancer genomes, suggesting a nongenetic origin of this phenomenon. We found that in vitro exposure of karyotypically stable human colorectal cancer cell lines to environmental stress conditions triggered a wide variety of chromosomal changes and karyotypic heterogeneity.
View Article and Find Full Text PDFIn many eukaryotic organisms cytokinesis is driven by a contractile actomyosin ring (CAR) that guides membrane invagination. What triggers CAR constriction at a precise time of the cell cycle is a fundamental question. In budding yeast CAR is assembled via a septin scaffold at the division site.
View Article and Find Full Text PDFChromosomal instability (CIN), a high rate of chromosome loss or gain, is often associated with poor prognosis and drug resistance in cancers. Aneuploid, including near-polyploid, cells contain an abnormal number of chromosomes and exhibit CIN. The post-mitotic cell fates following generation of different degrees of chromosome mis-segregation and aneuploidy are unclear.
View Article and Find Full Text PDFPioneering studies described cancer as an evolutionary process and detailed its intratumor heterogeneity in patients' specimens. The development of unbiased single-cell sequencing technologies confirmed these early observations and neoplasms are now widely recognized as populations of genetically, chromosomally and epigenetically distinct cells in which clones carrying beneficial traits expand in presence of selection factors like chemotherapy treatment. In support of this view, intratumor heterogeneity, by providing a large pool of phenotypically distinct clones, was shown to correlate with poor prognosis, therapy failure and metastasis.
View Article and Find Full Text PDFPolyploidization, a common event during the evolution of different tumours, has been proposed to confer selective advantages to tumour cells by increasing the occurrence of mutations promoting cancer progression and by conferring chemotherapy resistance. While conditions leading to polyploidy in cancer cells have been described, a general mechanism explaining the incidence of this karyotypic change in tumours is still missing. In this study, we tested whether a widespread tumour microenvironmental condition, low pH, could induce polyploidization in mammalian cells.
View Article and Find Full Text PDFGene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life.
View Article and Find Full Text PDFPluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas.
View Article and Find Full Text PDFThe cohesin ring, which is composed of the Smc1, Smc3, and Scc1 subunits, topologically embraces two sister chromatids from S phase until anaphase to ensure their precise segregation to the daughter cells. The opening of the ring is required for its loading on the chromosomes and unloading by the action of Wpl1 protein. Both loading and unloading are dependent on ATP hydrolysis by the Smc1 and Smc3 "head" domains, which engage to form two composite ATPase sites.
View Article and Find Full Text PDFTetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their effect on cell-cycle progression. Acute polyploidy was generated by knockdown of the essential regulator of cytokinesis anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology.
View Article and Find Full Text PDFBackground: Recombinant protein production in the methylotrophic yeast Pichia pastoris largely relies on integrative vectors. Although the stability of integrated expression cassettes is well appreciated for most applications, the availability of reliable episomal vectors for this host would represent a useful tool to expedite cloning and high-throughput screening, ameliorating also the relatively high clonal variability reported in transformants from integrative vectors caused by off-target integration in the P. pastoris genome.
View Article and Find Full Text PDFEvolution of budding yeast after the removal of an important component of the polarization machinery, BEM1, followed reproducible evolutionary trajectories governed by epistasis. Interestingly, cells restored polarization not by finding a substitute for Bem1 but by rendering its function dispensable.
View Article and Find Full Text PDF