Publications by authors named "Giulia Morieri"

Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface.

View Article and Find Full Text PDF

To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants.

View Article and Find Full Text PDF

The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling.

View Article and Find Full Text PDF
Article Synopsis
  • Plants began colonizing land over 470 million years ago, leading to the evolution of specialized tissue systems that allowed for various functions, including nutrient uptake and reproduction.
  • Structures that developed from the epidermis, such as root hairs and multicellular extensions, played a key role in this morphological innovation.
  • Research shows that the RSL class I transcription factor is crucial for the development of these structures in the liverwort Marchantia polymorpha and the moss Physcomitrella patens, indicating that these genes were vital for morphological diversity in early land plants.
View Article and Find Full Text PDF

Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection.

View Article and Find Full Text PDF

Rhizobial nodulation (Nod) factors activate both nodule morphogenesis and infection thread development during legume nodulation. Nod factors induce two different calcium responses: intra-nuclear calcium oscillations and a calcium influx at the root hair tip. Calcium oscillations activate nodule development; we wanted to test if the calcium influx is associated with infection.

View Article and Find Full Text PDF

Nodulation in legumes requires the recognition of rhizobially made Nod factors. Genetic studies have revealed that the perception of Nod factors involves LysM domain receptor-like kinases, while biochemical approaches have identified LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LNP) as a Nod factor-binding protein. Here, we show that antisense inhibition of LNP blocks nodulation in Lotus japonicus.

View Article and Find Full Text PDF

SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain.

View Article and Find Full Text PDF

Nitrogen-fixing symbioses of plants are often associated with bacterially infected nodules where nitrogen fixation occurs. The plant host facilitates bacterial infection with the formation of infection threads, unique structures associated with these symbioses, which are invaginations of the host cell with the capability of traversing cellular junctions. Here, we show that the infection thread shares mechanistic similarities to polar-growing cells, because the required for infection thread (RIT) locus of Medicago truncatula has roles in root-hair, trichome, and infection-thread growth.

View Article and Find Full Text PDF

Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection thread formation and colonization of Lotus japonicus roots by its natural microsymbiont, Mesorhizobium loti. nap1 and pir1 mutants developed an excess of uncolonized nodule primordia, indicating that these two genes were not essential for the initiation of nodule organogenesis per se.

View Article and Find Full Text PDF