Background And Purpose: Toll-like receptor 4 (TLR4) plays a key role in the induction of inflammatory responses both in peripheral organs and the CNS. Curcumin exerts anti-inflammatory functions by interfering with LPS-induced dimerization of TLR4-myeloid differentiation protein-2 (MD-2) complex and suppressing pro-inflammatory mediator release. However, the inhibitory mechanism of curcumin remains to be defined.
View Article and Find Full Text PDFMicroglia, the brain's resident macrophages, contribute to immune surveillance and the response to disease and injury. These immune cells play a dual role in the nervous system, having both neurotoxic and neuroprotective effects. Activation of microglia results in the production of inflammatory molecules and neurotoxic factors that often cause or contribute to neurodegenerative diseases.
View Article and Find Full Text PDFThe neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats.
View Article and Find Full Text PDFAnimal models of Parkinson's disease are essential to explore pathophysiological hypotheses and to test new treatment options, including neurotrophic factors. Catecholaminergic neurotoxins used to generate such models are 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. These neurotoxins predominantly kill dopaminergic neurons through oxidative damage and mitochondrial failure, although 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine fails to induce a significant dopaminergic neurodegeneration in rats.
View Article and Find Full Text PDFDopaminergic neuronal cell degeneration is the principal characteristic feature of the neuropathology of Parkinson's disease. Cultures of mesencephalic neurons are widely used as a source of dopaminergic neurons for the study of mechanisms implicated in dopaminergic cell death and for the evaluation of potential dopaminergic neuroprotective agents, including neurotrophic factors. This chapter presents a detailed protocol for the preparation of rat mesencephalic cell cultures and their application to evaluating the neuroprotective action of brain-derived neurotrophic factor.
View Article and Find Full Text PDF