Publications by authors named "Giulia Malacarne"

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability.

View Article and Find Full Text PDF

Successfully integrating transcriptomic experiments is a challenging task with the ultimate goal of analyzing gene expression data in the broader context of all available measurements, all from a single point of access. In its second major release VESPUCCI, the integrated database of gene expression data for grapevine, has been updated to be FAIR-compliant, employing standards and created with open-source technologies. It includes all public grapevine gene expression experiments from both microarray and RNA-seq platforms.

View Article and Find Full Text PDF

Grapevine () is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g.

View Article and Find Full Text PDF

The abundance of transcriptomic data and the development of causal inference methods have paved the way for gene network analyses in grapevine. Vitis OneGenE is a transcriptomic data mining tool that finds direct correlations between genes, thus producing association networks. As a proof of concept, the stilbene synthase gene regulatory network obtained with OneGenE has been compared with published co-expression analysis and experimental data, including cistrome data for MYB stilbenoid regulators.

View Article and Find Full Text PDF

is an important necrotroph in vineyards. Primary infections are mostly initiated by airborne conidia from overwintered sources around bloom, then the fungus remains quiescent from bloom till maturity and egresses at ripeness. We previously described in detail the process of flower infection and quiescence initiation.

View Article and Find Full Text PDF

The development of new resistant varieties to the oomycete (Berk.& Curt) is a promising way to combat downy mildew (DM), one of the major diseases threatening the cultivated grapevine ( L.).

View Article and Find Full Text PDF
Article Synopsis
  • - The scientific community is investigating how grapevines respond to climate change to identify genetic traits that can enhance their resilience through breeding and better agronomic practices.
  • - A new method called NESRA has been developed to expand local gene networks (LGNs) related to grapevine responses using transcriptomic data, focusing on pathways for anthocyanin and stilbenoid synthesis, as well as hormone signaling networks.
  • - The NESRA algorithm has shown promising results by aligning with experimental data and refining gene interactions, making it a valuable tool for further validation and research in grapevine genetics.
View Article and Find Full Text PDF

Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B.

View Article and Find Full Text PDF

Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions.

View Article and Find Full Text PDF

In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis.

View Article and Find Full Text PDF

Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear.

View Article and Find Full Text PDF

In the last decade, great progress has been made in clarifying the main determinants of anthocyanin accumulation in grape berry skin. However, the molecular details of the fine variation among cultivars, which ultimately contributes to wine typicity, are still not completely understood. To shed light on this issue, the grapes of 170 F1 progeny from the cross 'Syrah'×'Pinot Noir' were characterized at the mature stage for the content of 15 anthocyanins during four growing seasons.

View Article and Find Full Text PDF

The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar 'Golden Delicious'.

View Article and Find Full Text PDF

Plants have followed a reticulate type of evolution and taxa have frequently merged via allopolyploidization. A polyploid structure of sequenced genomes has often been proposed, but the chromosomes belonging to putative component genomes are difficult to identify. The 19 grapevine chromosomes are evolutionary stable structures: their homologous triplets have strongly conserved gene order, interrupted by rare translocations.

View Article and Find Full Text PDF

Background: Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background.

View Article and Find Full Text PDF

In the Vitaceae, viniferins represent a relatively restricted group of trans-resveratrol oligomers with antifungal properties, thus enabling plants to cope with pathogen attack. The aim of this study was to perform isolation and structural characterization of the whole class of viniferins accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola . Infected leaves of resistant plants were collected 6 days after infection, extracted with methanol, and prepurified by flash chromatography using ENV+ and Toyopearl HW 40S resins.

View Article and Find Full Text PDF

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots.

View Article and Find Full Text PDF

Background: Most of the grapevine (Vitis vinifera L.) cultivars grown today are those selected centuries ago, even though grapevine is one of the most important fruit crops in the world. Grapevine has therefore not benefited from the advances in modern plant breeding nor more recently from those in molecular genetics and genomics: genes controlling important agronomic traits are practically unknown.

View Article and Find Full Text PDF

Grapevine molecular maps based on microsatellites, AFLP and RAPD markers are now available. SSRs are essential to allow cross-talks between maps, thus upgrading any growing grapevine maps. In this work, single nucleotide polymorphisms (SNPs) were developed from coding sequences and from unique BAC-end sequences, and nested in a SSR framework map of grapevine.

View Article and Find Full Text PDF

Background: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing.

View Article and Find Full Text PDF

The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V.

View Article and Find Full Text PDF