Publications by authors named "Giulia Grisolia"

: Inflammation is caused by an excess of Sodium ions inside the cell. This generates a variation in the cell's membrane electric potential, becoming a steady state from a thermodynamic viewpoint. : This paper introduces a thermodynamic approach to inflammation based on the fundamental role of the electric potential of the cell membrane, introducing an analysis of the effect of heat transfer related to the inflammation condition.

View Article and Find Full Text PDF

A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several clinical conditions with promising results: in this context a better understanding of mechanisms by which ELF-EMF influences cellular events is necessary and it could lead to more extended and specific clinical applications in different pathological conditions. This paper develops a thermodynamic model to explain how ELF-EMF directly interferes with the cellular membrane, inducing a biological response related to a cellular energy conversion and modification of flows across cell membranes.

View Article and Find Full Text PDF

We previously established a thermodynamical model to calculate the specific frequencies of extremely low frequency-electromagnetic field (ELF-EMF) able to arrest the growth of cancer cells. In the present study, for the first time, we investigated the efficacy of this technology on osteosarcoma, and we applied a precise frequency of the electromagnetic field on three human osteosarcoma cell lines, grown as adherent cells and spheroids. We evaluated the antitumour efficacy of irradiation in terms of response to chemotherapeutic treatments, which is usually poor in this type of cancer.

View Article and Find Full Text PDF

The constructal law is used to improve the analysis of the resonant heat transfer in cancer cells. The result highlights the fundamental role of the volume/area ratio and its role in cancer growth and invasion. Cancer cells seek to increase their surface area to facilitate heat dissipation; as such, the tumour expansion ratio declines as malignant cells start to migrate and the cancer expands locally and systemically.

View Article and Find Full Text PDF

We present a novel thermodynamic approach to the epigenomics of cancer metabolism. Here, any change in a cancer cell's membrane electric potential is completely irreversible, and as such, cells must consume metabolites to reverse the potential whenever required to maintain cell activity, a process driven by ion fluxes. Moreover, the link between cell proliferation and the membrane's electric potential is for the first time analytically proven using a thermodynamic approach, highlighting how its control is related to inflow and outflow of ions; consequently, a close interaction between environment and cell activity emerges.

View Article and Find Full Text PDF

In our recent studies, we have developed a thermodynamic biochemical model able to select the resonant frequency of an extremely low frequency electromagnetic field (ELF-EMF) specifically affecting different types of cancer, and we have demonstrated its effects in vitro. In this work, we investigate the cellular response to the ELF electromagnetic wave in three-dimensional (3D) culture models, which mimic the features of tumors in vivo. Cell membrane was modelled as a resistor-capacitor circuit and the specific thermal resonant frequency was calculated and tested on two-dimensional (2D) and three-dimensional (3D) cell cultures of human pancreatic cancer, glioblastoma and breast cancer.

View Article and Find Full Text PDF

The brain demands a significant fraction of the energy budget in an organism; in humans, it accounts for 2% of the body mass, but utilizes 20% of the total energy metabolized. This is due to the large load required for information processing; spiking demands from neurons are high but are a key component to understanding brain functioning. Astrocytic brain cells contribute to the healthy functioning of brain circuits by mediating neuronal network energy and facilitating the formation and stabilization of synaptic connectivity.

View Article and Find Full Text PDF

Nonequilibrium temperature is a topic of research with continuously growing interest because of recent improvements in and applications of nonequilibrium thermodynamics, with particular regard to information theory, kinetic theory, nonequilibrium molecular dynamics, superfluids, radiative systems, etc. All studies on nonequilibrium temperature have pointed out that the definition of nonequilibrium temperature must be related to different aspects of the system, to the energy of the system, and to the energy fluxes between the system and its environment. In this paper, we introduce a definition of nonequilibrium temperature based on the Gouy-Stodola and Carnot theorems in order to satisfy all these theoretical requirements.

View Article and Find Full Text PDF

This paper develops a non-equilibrium thermodynamic approach to life, with particular regards to the membrane role. The Onsager phenomenological coefficients are introduced in order to point out the thermophysical properties of the cell systems. The fundamental role of the cell membrane electric potential is highlighted, in relation to ions and heat fluxes, pointing out the strictly relation between heat exchange and the membrane electric potential.

View Article and Find Full Text PDF

The aim of this review is to shed light on time and irreversibility, in order to link macroscopic to microscopic approaches to these complicated problems. After a brief summary of the standard notions of thermodynamics, we introduce some considerations about certain fundamental aspects of temporal evolution of out-of-equilibrium systems. Our focus is on the notion of entropy generation as the marked characteristic of irreversible behaviour.

View Article and Find Full Text PDF

From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy.

View Article and Find Full Text PDF

A great variety of complex physical, natural and artificial systems are governed by statistical distributions, which often follow a standard exponential function in the bulk, while their tail obeys the Pareto power law. The recently introduced [Formula: see text]-statistics framework predicts distribution functions with this feature. A growing number of applications in different fields of investigation are beginning to prove the relevance and effectiveness of [Formula: see text]-statistics in fitting empirical data.

View Article and Find Full Text PDF

The fight against a multifaceted incurable disease such as cancer requires a multidisciplinary approach to overcome the multitude of molecular defects at its origin. Here, a new thermophysical biochemical approach has been suggested and associated with the use of electromagnetic fields to control the growth of cancer cells. In particular, thermodynamic analysis of the heat transfer is developed in correlation with cellular parameters such as the volume/area ratio.

View Article and Find Full Text PDF

In the environment, there exists a continuous interaction between electromagnetic radiation and matter. So, atoms continuously interact with the photons of the environmental electromagnetic fields. This electromagnetic interaction is the consequence of the continuous and universal thermal non-equilibrium, that introduces an element of randomness to atomic and molecular motion.

View Article and Find Full Text PDF

The efficacy of the very low frequency electromagnetic field in cancer treatment remains elusive due to a lack of explanatory mechanisms for its effect. We developed a novel thermodynamic model that calculates for every cell type the frequency capable of inhibiting proliferation. When this frequency was applied to two human cancer cell lines, it reduced their growth while not affecting healthy cells.

View Article and Find Full Text PDF

Progressive loss-of-vision related to any intraocular disorder is known as glaucoma. Secretion of aqueous humor is physiologically important to provide nutrients and oxygen to the avascular anterior segment and ensuring normal visual function, even if, nowadays reducing the secretory rate to lower intraocular pressure is a major strategy in treating glaucomatous patients. Understanding the mechanisms and regulation of aqueous humor formation is very important to develop possible new approaches to lower intraocular pressure,but today there isn't any comprehensive model of the regulation of these component in forming aqueous humor.

View Article and Find Full Text PDF

To date, the choice of the characteristics of the extremely low-frequency electromagnetic field beneficial in proliferative disorders is still empirical. In order to make the ELF interaction selective, we applied the thermodynamic and biochemical principles to the analysis of the thermo-chemical output generated by the cell in the environment. The theoretical approach applied an engineering bio-thermodynamic approach recently developed in order to obtain a physical-mathematical model that calculated the frequency of the field able to maximize the mean entropy changes as a function of cellular parameters.

View Article and Find Full Text PDF

The exergetic analysis of the biosystems is developed. It takes into account that cells are able to convert only part of the energy absorbed. The result is to highlight the fundamental role of the exergy as a quantity useful to develop considerations on the cells behavior in relation to normal or disease states.

View Article and Find Full Text PDF

The aim of this work was to analyse the pressure inside the eyes anterior chamber, namedintraocular pressure (IOP), in relation to the biomechanical properties of corneas. The approach used was based on the constructal law, recently introduced in vision analysis. Results were expressed as the relation between the temperature of the ocular anterior chamber and the biomechanical properties of the cornea.

View Article and Find Full Text PDF

The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields.

View Article and Find Full Text PDF