Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are transcripts without coding potential that are pervasively expressed from the genome and have been increasingly reported to play crucial roles in all aspects of cell biology. They have been also heavily implicated in cancer development and progression, with both oncogenic and tumor suppressor functions. In this work, we identified and characterized a novel lncRNA, TAZ-AS202, expressed from the TAZ genomic locus and exerting pro-oncogenic functions in non-small cell lung cancer.
View Article and Find Full Text PDFEGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related human death. It is a heterogeneous disease, classified in two main histotypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which is further subdivided into squamous-cell carcinoma (SCC) and adenocarcinoma (AD) subtypes. Despite the introduction of innovative therapeutics, mainly designed to specifically treat AD patients, the prognosis of lung cancer remains poor.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms driving resistance to anti-cancer drugs is both a crucial step to define markers of response to therapy and a clinical need in many cancer settings. YAP and TAZ transcriptional cofactors behave as oncogenes in different cancer types. Deregulation of YAP/TAZ expression or alterations in components of the multiple signaling pathways converging on these factors are important mechanisms of resistance to chemotherapy, target therapy and hormone therapy.
View Article and Find Full Text PDFEnhancer (ENH)-associated long noncoding RNAs (lncRNA) are a peculiar class of RNAs produced by transcriptionally active ENHs, owning potential gene-regulatory function. Here, we characterized RAIN, a novel ENH-associated lncRNA. Analysis of RAIN expression in a retrospective cohort of human thyroid cancers showed that the expression of this lncRNA is restricted to cancer cells and strongly correlates with the expression of the cancer-promoting transcription factor RUNX2.
View Article and Find Full Text PDFInhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells.
View Article and Find Full Text PDFAberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown.
View Article and Find Full Text PDF