Publications by authors named "Giulia Gallerani"

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated.

View Article and Find Full Text PDF

ARID1A belongs to a class of chromatin regulatory proteins that function by maintaining accessibility at most promoters and enhancers, thereby regulating gene expression. The high frequency of ARID1A alterations in human cancers has highlighted its significance in tumorigenesis. The precise role of ARID1A in cancer is highly variable since ARID1A alterations can have a tumor suppressive or oncogenic role, depending on the tumor type and context.

View Article and Find Full Text PDF

Combining phenotypical and molecular characterization of rare cells is challenging due to their scarcity and difficult handling. In oncology, circulating tumor cells (CTCs) are considered among the most important rare cell populations. Their phenotypic and molecular characterization is necessary to define the molecular mechanisms underlying their metastatic potential.

View Article and Find Full Text PDF

Circulating tumor cells' (CTCs) heterogeneity contributes to counteract their introduction in clinical practice. Through single-cell sequencing we aim at exploring CTC heterogeneity in metastatic breast cancer (MBC) patients. Single CTCs were isolated using DEPArray NxT.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a rare tumor representing 1% of all breast malignancies. The prognosis of this histologic subtype is actually poor and there are no current clear-cut therapeutic guidelines. Hence, despite its uniqueness, its aggressive prognostic profile strongly encourages further studies to identify new markers and therapeutic targets.

View Article and Find Full Text PDF

Background: Here, we monitored the evolution of CTCs spread in 11 patients affected by locally advanced EC who were undergoing therapy.

Methods: In this perspective study, we designed multiple blood biopsies from individual patients: before and after neoadjuvant chemo-radio therapy and after surgery. We developed a multi-target array, named Grab-all assay, to estimate CTCs for their epithelial (EpCAM/E-Cadherin/Cytokeratins) and mesenchymal/stem (N-Cadherin/CD44v6/ABCG2) phenotypes.

View Article and Find Full Text PDF

Breast cancer (BC) is the most commonly diagnosed malignant tumor in women worldwide, and the leading cause of cancer death in the female population. The percentage of patients experiencing poor prognosis along with the risk of developing metastasis remains high, also affecting the resistance to current main therapies. Cancer progression and metastatic development are no longer due entirely to their intrinsic characteristics, but also regulated by signals derived from cells of the tumor microenvironment.

View Article and Find Full Text PDF

Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a "liquid biopsy".

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are a rare population of cells found in the bloodstream and represent key players in the metastatic cascade. Their analysis has proved to provide further core information concerning the tumor. Herein, we aim at investigating CTCs isolated from a 32-year-old patient diagnosed with triple negative spindle-shaped metaplastic breast cancer (MpBC), a rare tumor poorly responsive to therapies and with a dismal prognosis.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are a rare population of cells representing a key player in the metastatic cascade. They are recognized as a validated tool for the identification of patients with a higher risk of relapse, including those diagnosed with breast cancer (BC). However, CTCs are characterized by high levels of heterogeneity that also involve copy number alterations (CNAs), structural variations associated with gene dosage changes.

View Article and Find Full Text PDF

Rationale: Patients with, or who develop, metastatic breast cancer have a 5-year relative survival of about 25%. Endocrine therapy clearly improves outcomes in patients with estrogen receptor-positive breast cancer. In the metastatic setting, the primary goal of treatment is to maintain long-term disease control with good quality of life.

View Article and Find Full Text PDF

Breast cancer (BC) is a disease characterized by a high grade of heterogeneity. Consequently, despite the great achievements obtained in the last decades, most of the current therapeutic regimens still fail. The identification of new molecular mechanisms that will increase the knowledge of all steps of tumor initiation and growth is mandatory in finding new clinical strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied tumor cells from colorectal cancer (CRC) and found that certain cells, especially cancer stem cells (CCSCs), can grow and spread the disease.
  • They created special cell lines that help them understand how these cells behave in the body, including how they can travel through blood and form new tumors in other organs.
  • This research will help develop better tests and treatments for CRC by focusing on specific stages of the disease and finding new ways to help patients.
View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are associated with poor survival in metastatic cancer. Their identification, phenotyping, and genotyping could lead to a better understanding of tumor heterogeneity and thus facilitate the selection of patients for personalized treatment. However, this is hampered because of the rarity of CTCs.

View Article and Find Full Text PDF

Objective: We investigated the correlation between ploidy or S-phase fraction (SPF) and the clinical pathological characteristics of patients with peritoneal carcinomatosis from ovarian cancer. We also assessed their relation with the in vivo and in vitro response to several chemotherapeutic agents.

Patients And Methods: Fifty-three patients with peritoneal carcinomatosis from ovarian cancer were enrolled.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) has been shown to be associated with tumor progression and metastasis. During this process in breast cancer, a crucial role is played by alternative splicing systems. To identify a new early prognostic marker of metastasis, we evaluated EMT-related gene expression in breast cell lines, and in primary tumor tissue from 31 patients with early breast cancer, focusing our attention on EMT-related splicing factors ESRP1, ESRP2 and RBFOX2.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are cellular elements of undeniable significance that spread from the tumor mass into the peripheral blood and constitute one of the main vehicles for disease diffusion. Their rarity, in addition to a number of molecular and cellular features, has severely impaired research and exploitation. CTCs have been evaluated in early breast cancer (EBC), although long from being fully accepted in this field also due to a lack of technical standardization.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied special cells called circulating tumor cells (CTCs) in 48 patients with early breast cancer before and after surgery.
  • They found CTCs in about 27% of patients before surgery, around 21% one month later, and 33% six months after surgery.
  • The presence of CTCs was connected to worse signs of cancer, like larger tumors and more aggressive behavior, suggesting they might help predict how serious the cancer is.
View Article and Find Full Text PDF

Epithelial mesenchymal transition (EMT) is a physiological process necessary to normal embryologic development. However in genesis of pathological situations, this transition can be perverted and signaling pathways have different regulations from those of normal physiology. In cancer invasion, such a mechanism leads to generation of circulating tumor cells.

View Article and Find Full Text PDF

Until now detection and numeration of circulating tumor cells (CTCs) were essentially used as a prognostic factor in cancer progression. To extend the role of these kinds of analysis, it seems necessary to improve analytical methods related to isolation and characterization of CTCs. Discrepancies between published results corroborates this requirement.

View Article and Find Full Text PDF

The characterization of circulating tumor cells (CTCs) could substantially improve the management of cancer patients. However, their study is still a matter of debate, often due to lymphocyte contamination. In the present paper, an investigation of CTCs was carried out for the first time using DEPArray, a dielectrophoresis-based platform able to detect and sort pure CTCs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione3vqsgmkr3303llf31h0n6sedgvfmjsh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once