Publications by authors named "Giulia Emanuelli"

Article Synopsis
  • Pulmonary arterial hypertension (PAH) is linked to genetic factors, particularly mutations in the EIF2AK4 gene, which can lead to rare subtypes like pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis.
  • Some EIF2AK4 variants found in classical PAH patients have uncertain significance, prompting a need for further study to understand their impact on the disease.
  • Researchers applied both computational and experimental methods to assess sixteen EIF2AK4 variants, discovering that many did not impair kinase function and classifying dysfunctional variants into groups that could potentially be targeted for treatment with specific inhibitors.
View Article and Find Full Text PDF

The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment.

View Article and Find Full Text PDF

For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks.

View Article and Find Full Text PDF

In response to cardiac injury, increased activity of the hexosamine biosynthesis pathway (HBP) is linked with cytoprotective as well as adverse effects depending on the type and duration of injury. Glutamine-fructose amidotransferase (GFAT; gene name gfpt) is the rate-limiting enzyme that controls flux through HBP. Two protein isoforms exist in the heart called GFAT1 and GFAT2.

View Article and Find Full Text PDF

The respiratory tract and its resident immune cells face daily exposure to stress, both from without and from within. Inhaled pathogens, including severe acute respiratory syndrome coronavirus 2, and toxins from pollution trigger a cellular defence system that reduces protein synthesis to minimise viral replication or the accumulation of misfolded proteins. Simultaneously, a gene expression programme enhances antioxidant and protein folding machineries in the lung.

View Article and Find Full Text PDF

Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation.

View Article and Find Full Text PDF

Understanding epigenetic modifications to chromatin that regulate gene expression and cell-fate decisions is now possible in single cells thanks to recent technological advances. As interdisciplinary approaches are required to derive biological principles, this workshop brought together some of Europe's leading researchers in single-cell epigenetics to share technologies and biological insights.

View Article and Find Full Text PDF