Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described.
View Article and Find Full Text PDFBiomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Although many therapeutic options are available, several factors, including the presence of p53 mutations, impact tumor development and therapeutic resistance. is the second most frequently mutated gene in HCC, comprising more than 30% of cases.
View Article and Find Full Text PDFp53 is a tumor suppressor protein that is mutated in more than 50% of cancer cases. When mutated, it frequently results in p53 oncogenic gain of function (GOF), resulting in a greater tendency to aggregate in the phase separation and phase transition pathway. GOFs related to p53 aggregation include chemoresistance, which makes therapy even more difficult.
View Article and Find Full Text PDFMutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years.
View Article and Find Full Text PDFTumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse.
View Article and Find Full Text PDFp53 mutants can form amyloid-like structures that accumulate in cells. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) and its primary active metabolite, 2-methylene-3-quinuclidinone (MQ), can restore unfolded p53 mutants to a native conformation that induces apoptosis and activates several p53 target genes. However, whether PRIMA-1 can clear p53 aggregates is unclear.
View Article and Find Full Text PDFThe prion protein (PrP) has been suggested to operate as a scaffold/receptor protein in neurons, participating in both physiological and pathological associated events. PrP, laminin, and metabotropic glutamate receptor 5 (mGluR5) form a protein complex on the plasma membrane that can trigger signaling pathways involved in neuronal differentiation. PrP and mGluR5 are co-receptors also for β-amyloid oligomers (AβOs) and have been shown to modulate toxicity and neuronal death in Alzheimer's disease.
View Article and Find Full Text PDFc-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments.
View Article and Find Full Text PDFUnderstanding how Nep-like proteins (NLPs) behave during the cell cycle and disease progression of plant pathogenic oomycetes, fungi and bacteria is crucial in light of compelling evidence that these proteins play a role in Witches` Broom Disease (WBD) of Theobroma cacao, one of the most important phytopathological problems to afflict the Southern Hemisphere. The crystal structure of MpNep2, a member of the NLP family and the causal agent of WBD, revealed the key elements for its activity. This protein has the ability to refold after heating and was believed to act as a monomer in solution, in contrast to the related homologs MpNep1 and NPP from the oomyceteous fungus Phytophthora parasitica.
View Article and Find Full Text PDF