Background: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma patients) has markedly improved overall survival of patients with late-stage tumors, even more so when combined with MEK inhibitors targeting the same signaling pathway. However, invariably patients become resistant to this targeted therapy resulting in rapid progression with treatment-refractory disease.
View Article and Find Full Text PDFBackground: Drug resistance remains an unsolved clinical issue in oncology. Despite promising initial responses obtained with BRAF and MEK kinase inhibitors, resistance to treatment develops within months in virtually all melanoma patients.
Methods: Microarray analyses were performed in BRAF inhibitor-sensitive and resistant cell lines to identify changes in the transcriptome that might play a role in resistance.
Background: Most melanoma patients with BRAF positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2017
Background: Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue.
View Article and Find Full Text PDFExtracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination.
View Article and Find Full Text PDFRetinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, AAV's limited cargo capacity prevents its application to therapies of inherited retinal diseases due to mutations of genes over 5 kb, like Stargardt's disease (STGD) and Usher syndrome type IB (USH1B). Previous methods based on 'forced' packaging of large genes into AAV capsids may not be easily translated to the clinic due to the generation of genomes of heterogeneous size which raise safety concerns.
View Article and Find Full Text PDFGene transfer to both cone and rod photoreceptors (PRs) is essential for gene therapy of inherited retinal degenerations that are caused by mutations in genes expressed in both PR types. Vectors based on the adeno-associated virus (AAV) efficiently transduce PRs of different species. However, these are predominantly rods and little is known about the ability of the AAV to transduce cones in combination with rods.
View Article and Find Full Text PDFRecombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing.
View Article and Find Full Text PDF