With a single circulating vector-borne virus, the basic reproduction number incorporates contributions from tick-to-tick (co-feeding), tick-to-host and host-to-tick transmission routes. With two different circulating vector-borne viral strains, resident and invasive, and under the assumption that co-feeding is the only transmission route in a tick population, the invasion reproduction number depends on whether the model system of ordinary differential equations possesses the property of neutrality. We show that a simple model, with two populations of ticks infected with one strain, resident or invasive, and one population of co-infected ticks, does not have Alizon's neutrality property.
View Article and Find Full Text PDFLymphocyte populations, stimulated in vitro or in vivo, grow as cells divide. Stochastic models are appropriate because some cells undergo multiple rounds of division, some die, and others of the same type in the same conditions do not divide at all. If individual cells behave independently, then each cell can be imagined as sampling from a probability density of times to division and death.
View Article and Find Full Text PDF