Lithography on a sub-100 nm scale is beyond the diffraction limits of standard optical lithography but is nonetheless a key step in many modern technological applications. At this length scale, there are several possible approaches that require either the preliminary surface deposition of materials or the use of expensive and time-consuming techniques. In our approach, we demonstrate a simple process, easily scalable to large surfaces, where the surface patterning that controls pore formation on highly doped silicon wafers is obtained by an electrochemical process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2017
The self-assembly (SA) of diblock copolymers (DBCs) based on phase separation into different morphologies of small and high-density features is widely investigated as a patterning and nanofabrication technique. The integration of conventional top-down approaches with the bottom-up SA of DBCs enables the possibility to address the gap in nanostructured lateral length standards for nanometrology, consequently supporting miniaturization processes in device fabrication. On this topic, we studied the pattern characteristic dimensions (i.
View Article and Find Full Text PDFThe ordering process of asymmetric PS-b-PMMA block copolymers (BCPs) is investigated on flat SiO2 surfaces and on topographically patterned substrates. The topographic patterns consist of periodic gratings of 10 trenches defined by conventional top-down approaches and subsequently neutralized using a P(S-r-MMA) random copolymer (RCP). When the ordering process is accomplished on a flat surface at a temperature ranging between 180 and 230 °C, cylindrical microdomains perpendicularly oriented with respect to the substrate are observed irrespective of annealing temperature.
View Article and Find Full Text PDF