Publications by authors named "Giulia Antonini"

Article Synopsis
  • Developing high-affinity monovalent ligands for lectins is difficult due to weak binding interactions, prompting research into covalent ligands for BC2L-C lectin, which is linked to severe respiratory infections in immunocompromised patients.
  • Antiadhesion therapy is gaining traction as a strategy against infections, particularly targeting bacterial lectins like BC2L-C-Nt, which recognizes specific blood group oligosaccharides in host cells.
  • Using computational methods, researchers created effective reversible covalent ligands that enhanced their binding affinity significantly, demonstrating the crucial role of specific ligand components in achieving this improved efficacy.
View Article and Find Full Text PDF

Opportunistic infections from multidrug-resistant pathogens such as are a threatening risk for hospital-bound patients suffering from immunocompromised conditions or cystic fibrosis. BC2L-C lectin has been linked to bacterial adhesion and biofilm formation, thus hindering its activity is seen as a promising strategy to reduce the severity of the infection. We recently described the first bifunctional ligands of the trimeric N-terminal domain of BC2L-C (BC2L-C-Nt), capable of simultaneously engaging its fucose-specific sugar binding site and a vicinal region at the interface between two monomers.

View Article and Find Full Text PDF

The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from that binds (mammalian) fucosides at the -terminal domain and (bacterial) mannosides at the -terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells.

View Article and Find Full Text PDF

Abdominal pain is a frequent symptom of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBDs). Although the knowledge of these pathologies is progressing, new therapeutic strategies continue to be investigated. In the present study, the effect of a system of molecules of natural origin (a medical device according to EU Directive 93/42/EC, engineered starting from resins, polysaccharides and and polyphenols) was evaluated against the intestinal damage and visceral pain development in DNBS-induced colitis model in rats.

View Article and Find Full Text PDF

Lymphatic leakage can be seen as a detrimental phenomenon associated with fluid retention and deposition as well as gain of weight. Moreover, lymphatic dysfunction is associated with an inflammatory environment and can be a substrate for other health conditions. A number of treatments can ameliorate lymphatic vasculature: natural substances have been used as treatment options particularly suitable for their consolidated effectiveness and safety profile.

View Article and Find Full Text PDF