Publications by authors named "Giulia Antonazzo"

Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge.

View Article and Find Full Text PDF

FlyBase (flybase.org) is a model organism database and knowledge base about Drosophila melanogaster, commonly known as the fruit fly. Researchers from around the world rely on the genetic, genomic, and functional information available in FlyBase, as well as its tools to view and interrogate these data.

View Article and Find Full Text PDF

Research in model organisms is central to the characterization of signaling pathways in multicellular organisms. Here, we present the comprehensive and systematic curation of 17 Drosophila signaling pathways using the Gene Ontology framework to establish a dynamic resource that has been incorporated into FlyBase, providing visualization and data integration tools to aid research projects. By restricting to experimental evidence reported in the research literature and quantifying the amount of such evidence for each gene in a pathway, we captured the landscape of empirical knowledge of signaling pathways in Drosophila.

View Article and Find Full Text PDF
Article Synopsis
  • Research on Drosophila signaling pathways is crucial for understanding cellular communication in multicellular organisms and has been systematically curated using the Gene Ontology framework.
  • This project involved documenting 17 specific signaling pathways and integrating them into FlyBase, which includes new visualization tools for easier access.
  • The curation focused on utilizing experimental evidence from existing literature, enhancing the knowledge of these pathways and supporting ongoing research efforts with comprehensive data and insights.
View Article and Find Full Text PDF

Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an 'omics' study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.

View Article and Find Full Text PDF

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.

View Article and Find Full Text PDF

Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an 'omics' study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.

View Article and Find Full Text PDF

Multicellular organisms rely on cell-cell communication to exchange information necessary for developmental processes and metabolic homeostasis. Cell-cell communication pathways can be inferred from transcriptomic datasets based on ligand-receptor expression. Recently, data generated from single-cell RNA sequencing have enabled ligand-receptor interaction predictions at an unprecedented resolution.

View Article and Find Full Text PDF

FlyBase (flybase.org) is an essential online database for researchers using Drosophila melanogaster as a model organism, facilitating access to a diverse array of information that includes genetic, molecular, genomic and reagent resources. Here, we describe the introduction of several new features at FlyBase, including Pathway Reports, paralog information, disease models based on orthology, customizable tables within reports and overview displays ('ribbons') of expression and disease data.

View Article and Find Full Text PDF

Brief summaries describing the function of each gene's product(s) are of great value to the research community, especially when interpreting genome-wide studies that reveal changes to hundreds of genes. However, manually writing such summaries, even for a single species, is a daunting task; for example, the Drosophila melanogaster genome contains almost 14 000 protein-coding genes. One solution is to use computational methods to generate summaries, but this often fails to capture the key functions or express them eloquently.

View Article and Find Full Text PDF

FlyBase (flybase.org) is a knowledge base that supports the community of researchers that use the fruit fly, Drosophila melanogaster, as a model organism. The FlyBase team curates and organizes a diverse array of genetic, molecular, genomic, and developmental information about Drosophila.

View Article and Find Full Text PDF

FlyBase (flybase.org) is the primary online database of genetic, genomic, and functional information about Drosophila species, with a major focus on the model organism Drosophila melanogaster. The long and rich history of Drosophila research, combined with recent surges in genomic-scale and high-throughput technologies, mean that FlyBase now houses a huge quantity of data.

View Article and Find Full Text PDF

Since 1992, FlyBase (flybase.org) has been an essential online resource for the Drosophila research community. Concentrating on the most extensively studied species, Drosophila melanogaster, FlyBase includes information on genes (molecular and genetic), transgenic constructs, phenotypes, genetic and physical interactions, and reagents such as stocks and cDNAs.

View Article and Find Full Text PDF

Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information.

View Article and Find Full Text PDF