Publications by authors named "Giudetti G"

Unraveling the reaction pathway of photoinduced reactions poses a great challenge owing to its complexity. Recently, graph theory-based machine learning combined with nonadiabatic molecular dynamics (NAMD) has been applied to obtain the global reaction coordinate of the photoisomerization of azobenzene. However, NAMD simulations are computationally expensive as they require calculating the nonadiabatic coupling vectors at each time step.

View Article and Find Full Text PDF

The tRNA-histidine guanylyltransferase 1-like (), also known as induced in high glucose-1 (), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNA). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia.

View Article and Find Full Text PDF

Background: Post-translational histone modifications are among the most common epigenetic modifications that orchestrate gene expression, playing a pivotal role during embryonic development and in various pathological conditions. Among histone lysine demethylases, KDM7A, also known as KIAA1718 or JHDM1D, catalyzes the demethylation of H3K9me1/2 and H3K27me1/2, leading to transcriptional regulation. Previous data suggest that KDM7A plays a central role in several biological processes, including cell proliferation, commitment, differentiation, apoptosis, and maintenance.

View Article and Find Full Text PDF

We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (M) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit M. Two other compounds, X77A and X77C, were designed computationally in this work.

View Article and Find Full Text PDF

This work explores the level of transparency in reporting the details of computational protocols that is required for practical reproducibility of quantum mechanics/molecular mechanics (QM/MM) simulations. Using the reaction of an essential SARS-CoV-2 enzyme (the main protease) with a covalent inhibitor (carmofur) as a test case of chemical reactions in biomolecules, we carried out QM/MM calculations to determine the structures and energies of the reactants, the product, and the transition state/intermediate using analogous QM/MM models implemented in two software packages, NWChem and Q-Chem. Our main benchmarking goal was to reproduce the key energetics computed with the two packages.

View Article and Find Full Text PDF

Introducing photoswitches into the DNA G-quadruplex provides excellent opportunities to control folding and unfolding of these assemblies, demonstrating their potential in the development of novel nanodevices with medical and nanotechnology applications. Using a quantum mechanics/molecular mechanics (QM/MM) scheme, we carried out a series of simulations to identify the effect of the size and substitution patterns of three azobenzene derivatives (AZ1, AZ2 and AZ3) on the excitation energies of the two lowest excited states of the smallest photoswitchable G-quadruplex reported to date. We demonstrated that the size and the substitution pattern do not affect the ultrafast cis-trans photoiomerization mechanism of the azobenzene derivatives significantly, in agreement with the experiment.

View Article and Find Full Text PDF

Collagen prolyl 4-hydroxylases (c-P4Hs) are evolutionary conserved enzymes whose activity is essential for the correct folding of stable triple helical molecules of collagen and collagen-like proteins. They play crucial roles in embryo development, connective tissue functional organization, tumor growth and metastasis. Despite the important function of these enzymes, little is known about their expression during vertebrate development.

View Article and Find Full Text PDF

Minimizing the foreign body reaction to polyimide-based implanted devices plays a pivotal role in several biomedical applications. In this work, we propose materials exhibiting nonbiofouling properties and a Young's modulus reflecting that of soft human tissues. We describe the synthesis, characterization, and in vitro validation of poly(carboxybetaine) hydrogel coatings covalently attached to polyimide substrates via a photolabile 4-azidophenyl group, incorporated in poly(carboxybetaine) chains at two concentrations of 1.

View Article and Find Full Text PDF

In the last decade, the use of flexible biosensors for neuroprosthetic and translational applications has widely increased. Among them, the polyimide (PI)-based thin-film electrodes got a large popularity. However, the usability of these devices is still hampered by a non-optimal tissue-device interface that usually compromises the long-term quality of neural signals.

View Article and Find Full Text PDF

Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.

View Article and Find Full Text PDF

After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation.

View Article and Find Full Text PDF

Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls.

View Article and Find Full Text PDF

We recently identified pfdn6a and tcp1α (also known as cct-α) as genes coregulated by the transcription factor Rx1. The proteins encoded by these genes belong to two interacting complexes (Prefoldin and "chaperonin containing t-complex polypeptide 1"), which promote the folding of actin and tubulin and have more recently been reported to be involved in a variety of additional functions including cell cycle control and transcription regulation. However, little is known about the expression and function of these two genes during vertebrate development.

View Article and Find Full Text PDF

Nerve guide conduits are currently the elective device for peripheral nerve reconstruction applications, as nerve autograft often is hampered by procedure invasiveness and limited nerve availability. Many technological improvements have been approached to enhance nerve regeneration driven by these devices, whose main drawbacks are often disordered sprouting and ineffective axon guidance. Among the adopted solutions to overcome these problems, embedding of extracellular matrix (ECM) proteins and neurotrophic factors (NF) in nerve conduits has been a promising one.

View Article and Find Full Text PDF

Background: The transcription factor Rx1, also known as Rax, controls key properties of retinal precursors including migration behavior, proliferation, and maintenance of multipotency. However, Rx1 effector genes are largely unknown.

Results: To identify genes controlled by Rx1 in early retinal precursors, we compared the transcriptome of Xenopus embryos overexpressing Rx1 to that of embryos in which Rx1 was knocked-down.

View Article and Find Full Text PDF

The molecular mechanisms underlying the acquisition of retinal precursor identity are scarcely defined. Although the homeobox gene Rx1 (also known as Rax) plays a major role in specifying retinal precursors and maintaining their multipotent state, the involved mechanisms remain to be largely deciphered. Here, following a highthroughput screen for genes regulated by Rx1, we found that this transcription factor specifies the fate of retinal progenitors by repressing genes normally activated in adjacent ectodermal territories.

View Article and Find Full Text PDF

Despite human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestinal cells are quite scanty. In this study we evaluated the toxicity induced by zinc oxide (ZnO) and titanium dioxide (TiO₂) NPs on Caco-2 cells. Only ZnO NPs produced significant cytotoxicity, evaluated by two different assays.

View Article and Find Full Text PDF

An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cytokine and oxidative stress. A high release of TNF-α and IL-8 by epithelial/endothelial cells, potentiated in the presence of THP-1 cells could contribute to the observed downregulation of surfactant proteins A mRNA expression resulting in the damage of the alveolar barrier.

View Article and Find Full Text PDF

Although amorphous silica nanoparticles (aSiO(2)NPs) are believed to be non-toxic and are currently used in several industrial and biomedical applications including cosmetics, food additives and drug delivery systems, there is still no conclusive information on their cytotoxic, genotoxic and carcinogenic potential. For this reason, this work has investigated the effects of aSiO(2)NPs on Balb/3T3 mouse fibroblasts, focusing on cytotoxicity, cell transformation and genotoxicity. Results obtained using aSiO(2)NPs, with diameters between 15 nm and 300 nm and exposure times up to 72 h, have not shown any cytotoxic effect on Balb/3T3 cells as measured by the MTT test and the Colony Forming Efficiency (CFE) assay.

View Article and Find Full Text PDF

Different in vitro assays are successfully used to determine the relative cytotoxicity of a broad range of compounds. Nevertheless, different research groups have pointed out the difficulty in using the same tests to assess the toxicity of nanoparticles (NPs). In this study, we evaluated the possible use of a microphysiometer, Bionas 2500 analyzing system Bionas GmbH®, to detect in real time changes in cell metabolisms linked to NPs exposure.

View Article and Find Full Text PDF

In this work, we present a complete physicochemical characterization of multi-wall carbon nanotubes (mwCNTs) in order to assess their potential toxicological effects in in vitro cell models using Colony Forming Efficiency (CFE) assay. We verified that Dimethyl Sulfoxide (DMSO) was a more suitable solvent to disperse mwCNTs compared to culture medium guaranteeing reproducibility in the preparation of testing dilutions. The CFE assay was carried out on five mammalian cell lines representing the potentially exposed and/or target organs for nanomaterials (lung, liver, kidney, intestine, skin), as well as on mouse fibroblasts cell line, which usually is considered a sensitive model to verify in vitro cytotoxicity of test compounds.

View Article and Find Full Text PDF