Background: Mucin disulfide cross-links mediate pathologic mucus formation in muco-obstructive lung diseases. MUC-031, a novel thiol-modified carbohydrate compound, cleaves disulfides to cause mucolysis. The aim of this study was to determine the mucolytic and therapeutic effects of MUC-031 in sputum from patients with cystic fibrosis (CF) and mice with muco-obstructive lung disease (βENaC-Tg mice).
View Article and Find Full Text PDFInterferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2022
The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses.
View Article and Find Full Text PDFAnecdotal reports indicate that many animal shelters experienced increased adoption and foster care rates during the COVID-19 pandemic, yet peer-reviewed evidence is lacking. In this pilot survey of 14 animal shelters in the Northeastern United States, we aimed to investigate the impact of the COVID-19 pandemic on animal intakes, foster care and five outcome types and describe operational changes reported by shelters in response to COVID-19. Paired sample -tests and Wilcoxon signed-rank tests were used to compare intake, adoption, euthanasia and foster care rates and numbers between March-June 2019 and 2020.
View Article and Find Full Text PDFNeutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group ("thiol drugs"), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells.
View Article and Find Full Text PDFTrehalose is commonly used as a protein stabilizer in spray dried protein formulations delivered via the pulmonary route. Spray dried trehalose formulations are highly hygroscopic, which makes them prone to deliquescence and recrystallization when exposed to moisture, leading to impairment in aerosolization performance. The main aim of this study was to investigate and compare the effect of hydrophobic amino acids (i.
View Article and Find Full Text PDFThe present study evaluates the effect of L-leucine concentration and operating parameters of a laboratory spray dryer on characteristics of trehalose dry powders, with the goal of optimizing production of these powders for inhaled drug delivery. Trehalose/L-leucine mixtures were spray dried from aqueous solution using a laboratory spray dryer. A factorial design of experiment (DoE) was undertaken and process parameters adjusted were: inlet temperature, gas flow rate, feed solution flow rate (pump setting), aspiration setting and L-leucine concentration.
View Article and Find Full Text PDFPolyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively.
View Article and Find Full Text PDFCellular responses to the loss of genomic stability are well-established, while how mammalian cells respond to chromatin destabilization is largely unknown. We previously found that DNA demethylation on p53-deficient background leads to transcription of repetitive heterochromatin elements, followed by an interferon response, a phenomenon we named TRAIN (Transcription of Repeats Activates INterferon). Here, we report that curaxin, an anticancer small molecule, destabilizing nucleosomes via disruption of histone/DNA interactions, also induces TRAIN.
View Article and Find Full Text PDFConstitutive expression, along with senescence-associated β-galactosidase (SAβG), are commonly accepted biomarkers of senescent cells (SCs). Recent reports attributed improvement of the healthspan of aged mice following -positive cell killing to the eradication of accumulated SCs. However, detection of /SAβG-positive macrophages in the adipose tissue of old mice and in the peritoneal cavity of young animals following injection of alginate-encapsulated SCs has raised concerns about the exclusivity of these markers for SCs.
View Article and Find Full Text PDFThe development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters.
View Article and Find Full Text PDFSenescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads.
View Article and Find Full Text PDFMyelosuppression and gastrointestinal damage are common side effects of cancer treatment limiting efficacy of DNA-damaging chemotherapeutic drugs. The Toll-like receptor 5 (TLR5) agonist Entolimod has demonstrated efficacy in mitigating damage to hematopoietic and gastrointestinal tissues caused by radiation. Here, using 5-Fluorouracil (5-FU) treated mice as a model of chemotherapy-induced side effects, we demonstrated significant reduction in the severity of 5-FU-induced morbidity and increased survival accompanied by the improved integrity of intestinal tissue and stimulated the restoration of hematopoiesis.
View Article and Find Full Text PDFPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB.
View Article and Find Full Text PDFVertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
The circadian clock controls many physiological parameters including immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. It is widely accepted that circadian regulation is based on periodic changes in gene expression that are triggered by transcriptional activity of the CLOCK/BMAL1 complex. Through the use of a mouse model system we show that daily variations in the intensity of the NF-κB response to a variety of immunomodulators are mediated by core circadian protein CLOCK, which can up-regulate NF-κB-mediated transcription in the absence of BMAL1; moreover, BMAL1 counteracts the CLOCK-dependent increase in the activation of NF-κB-responsive genes.
View Article and Find Full Text PDFPattern-recognition receptors (PRR) play a crucial role in the induction of the defense reactions of the immune system against pathogenic bacterial and viral infections. The activation of PRR by specific, highly conserved pathogen-associated molecular patterns (PAMPs) induces numerous immune reactions related both to innate and adaptive immunity. In addition to the well-studied Toll-like receptors, pathogens can be recognized by the receptors belonging to the other PRR families; including NOD-like receptors (NLR).
View Article and Find Full Text PDFThis manuscript describes the fabrication and manipulation of millimeter-scale spheres fabricated from ionotropic hydrogels that are crosslinked with paramagnetic metal ions (e.g., Ho(3+)).
View Article and Find Full Text PDFThis paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW approximately 30 kD) to the ion channel-forming peptides (MW approximately 2.
View Article and Find Full Text PDFThis work compares the denaturation of two proteins-bovine carbonic anhydrase II (BCA) and its derivative with all lysine groups acetylated (BCA-Ac(18))-by urea, guanidinium chloride (GuHCl), heat, and sodium dodecyl sulfate (SDS). It demonstrates that increasing the net negative charge of the protein by acetylation of lysines reduces its stability to urea, GuHCl, and heat, but increases its kinetic stability (its thermodynamic stability cannot be measured) towards denaturation by SDS. Increasing the ionic strength of the buffer improves the stability of BCA-Ac(18) to urea and heat, but still leaves it less stable than unacetylated BCA to those denaturants.
View Article and Find Full Text PDFThis paper shows that proteins display an unexpectedly wide range of behaviors in buffers containing moderate (0.1-10 mM) concentrations of SDS (complete unfolding, formation of stable intermediate states, specific association with SDS, and various kinetic phenomena); capillary electrophoresis provides a convenient method of examining these behaviors. Examination of the dynamics of the response of proteins to SDS offers a way to differentiate and characterize proteins.
View Article and Find Full Text PDFAlmost all proteins contain charged amino acids. While the function in catalysis or binding of individual charges in the active site can often be identified, it is less clear how to assign function to charges beyond this region. Are they necessary for solubility? For reasons other than solubility? Can manipulating these charges change the properties of proteins? A combination of capillary electrophoresis (CE) and protein charge ladders makes it possible to study the roles of charged residues on the surface of proteins outside the active site.
View Article and Find Full Text PDFThis study compares the rate of denaturation with sodium dodecyl sulfate (SDS) of the individual rungs of protein charge ladders generated by acylation of the lysine epsilon-NH3+ groups of bovine carbonic anhydrase II (BCA). Each acylation decreases the number of positively charged groups, increases the net negative charge, and increases the hydrophobic surface area of BCA. This study reports the kinetics of denaturation in solutions containing SDS of the protein charge ladders generated with acetic and hexanoic anhydrides; plotting these rates of denaturation as a function of the number of modifications yields a U-shaped curve.
View Article and Find Full Text PDF