Publications by authors named "Gitit Hershkovits"

Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression.

View Article and Find Full Text PDF

The yeast chromatin protein Sin1p/Spt2p has long been studied, but the understanding of its function has remained elusive. The protein has sequence similarity to HMG1, specifically binds crossing DNA structures, and serves as a negative transcriptional regulator of a small family of genes that are activated by the SWI/SNF chromatin-remodeling complex. Recently, it has been implicated in maintaining the integrity of chromatin during transcription elongation.

View Article and Find Full Text PDF

Objectives: To identify and characterize the aetiology of an outbreak of extra-intestinal multidrug-resistant Escherichia coli infections in elderly patients in Israel.

Methods: Extended-spectrum beta-lactamase (ESBL)-producing clinical isolates of E. coli from extra-intestinal sources were tested for susceptibility to non-beta-lactam drugs, and their serotypes were determined.

View Article and Find Full Text PDF

Sin1p/Spt2p is a yeast chromatin protein that, when mutated or deleted, alters the transcription of a family of genes presumably by modulating local chromatin structure. In this study, we investigated the ability of different domains of this protein to bind four-way junction DNA (4WJDNA) since 4WJDNA can serve as a model for bent double helical DNA and for the crossed structure formed at the exit and entry of DNA to the nucleosomes. Sequence alignment of Sin1p/Spt2p homologues from 11 different yeast species showed conservation of several domains.

View Article and Find Full Text PDF

The outer membrane protein of Photobacterium damsela (OMP-PD) and the gene encoding for this porin protein were isolated and characterized. The deduced amino acid sequence of the OMP-PD monomer has 338 amino acids and a calculated molecular weight of 36,951 Da. This sequence includes a 22-amino acid signal peptide at the N-terminal, which is not found when the monomer is located in the outer membrane.

View Article and Find Full Text PDF

The major outer membrane protein of Acinetobacter baumannii is the heat-modifiable protein HMP-AB, a porin with a large pore size allowing the penetration of solutes having a molecular weight of up to approximately 800 Da. Cross-linking experiments with glutardialdehyde failed to show any cross-linking between the monomers, a fact that proves again that this porin protein functions as a monomeric porin. The specific activity of this porin was found to be similar to that of other monomeric porins.

View Article and Find Full Text PDF