Publications by authors named "Giti Verma"

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice.

View Article and Find Full Text PDF

Calcium (Ca) is implicated in the initial phase of seed germination and seedling establishment. It is stored complexed with phytic acid during seed development and released by phytase action during germination. We observed phytase activity 18 h post-imbibition (PI) in Vigna seeds, while radicle protrusion occurred approximately 12 h PI.

View Article and Find Full Text PDF

Arsenic (As), classified as a "metalloid" element, is well known for its carcinogenicity and other toxic effects to humans. Arsenic exposure in plants results in the alteration of the physiochemical and biological properties and consequently, loss of crop yield. Being a staple food for half of the world's population, the consumption of As-contaminated rice grain by humans may pose serious health issues and risks for food security.

View Article and Find Full Text PDF

Glutathione S-transferases (GSTs) are well-known enzymes due to their role in detoxification of xenobiotic compounds. However, their biochemical action is still not so clear in imparting tolerance to several abiotic stresses in crop plants. In our previous study, we observed that rice tau class OsGSTU30 plays a significant role in the detoxification of Cr(vi).

View Article and Find Full Text PDF

Abiotic stresses adversely affect cellular homeostasis, impairing overall growth and development of plants. These initial stress signals activate downstream signalling processes, which, subsequently, activate stress-responsive mechanisms to re-establish homeostasis. Dehydrins (DHNs) play an important role in combating dehydration stress.

View Article and Find Full Text PDF

Seeds represent an excellent opportunity to investigate the role of reactive oxygen species (ROS) in control of metabolism during germination and seedling establishment. Cotyledons, the storage organs in Vigna, do not display growth/cell division while the embryonic axis shows rapid growth and intense metabolic activity. The present study investigates the possibility of ROS generated during respiration in the axis serving as messengers guiding storage reserve mobilization from cotyledons at the pre-greening stage.

View Article and Find Full Text PDF

Plant cell wall expresses monoamine oxidases (MAOs) that catalyze oxidation of secreted amines and produce H2O2 in the process. The H2O2, so produced is used by cell wall peroxidases for lignification of cell wall or for plant defense. The natural substrates for these MAOs are elusive, but polyamines and certain catecholamines have been proposed as candidates.

View Article and Find Full Text PDF

Calcium (Ca(2+))-dependent/activated proteases make decisive cleavages in proteins, affecting their further degradation/activation. Few such Ca(2+)-dependent proteases have been reported from plants, and none during germination-related events. Seeds are woken up from their quiescent state upon imbibition of water.

View Article and Find Full Text PDF