Publications by authors named "Giti Garthwaite"

In the central nervous system, nitric oxide (NO) transmits signals from one neurone to another, or from neurones to astrocytes or blood vessels, but the possibility of oligodendrocytes being physiological NO targets has been largely ignored. By exploiting immunocytochemistry for cGMP, the second messenger generated on activation of NO receptors, oligodendrocytes were found to respond to both exogenous and endogenous NO in cerebellar slices from rats aged 8 days to adulthood. Atrial natriuretic peptide, which acts on membrane-associated guanylyl cyclase-coupled receptors, also raised oligodendrocyte cGMP in cerebellar slices.

View Article and Find Full Text PDF

Nitric oxide (NO) is a widespread signaling molecule with potentially multifarious actions of relevance to health and disease. A fundamental determinant of how it acts is its concentration, but there remains a lack of coherent information on the patterns of NO release from its sources, such as neurons or endothelial cells, in either normal or pathological conditions. We have used detector cells having the highest recorded NO sensitivity to monitor NO release from brain tissue quantitatively and in real time.

View Article and Find Full Text PDF

Brain function is usually perceived as being performed by neurons with the support of glial cells, the network of blood vessels situated nearby serving simply to provide nutrient and to dispose of metabolic waste. Revising this view, we find from experiments on a rodent central white matter tract (the optic nerve) in vitro that microvascular endothelial cells signal persistently to axons using nitric oxide (NO) derived from the endothelial NO synthase (eNOS). The endogenous NO acts to stimulate guanylyl cyclase-coupled NO receptors in the axons, leading to a raised cGMP level which then causes membrane depolarization, apparently by directly engaging hyperpolarization-activated cyclic nucleotide-gated ion channels.

View Article and Find Full Text PDF

Nitric oxide (NO) may act as a toxin in several neuropathologies, including the brain damage resulting from cerebral ischaemia. Rat striatal slices were used to determine the mechanism of enhanced NO release following simulated ischaemia and, for estimating the NO concentrations, the activity of guanylyl cyclase served as a biosensor. Exposure of the slices for 10 min to an oxygen- and glucose-free medium caused a 70% fall in cGMP levels.

View Article and Find Full Text PDF

In slices of 8-day-old rat cerebellum, the lowest concentration of glutamate that induced toxicity (30 min exposure; 90 min recovery) was 100 microM, but the damage only occurred in the outermost regions. As the concentration was raised, the band of necrosis became progressively deeper until, at 3 mM, it was uniform across the slice thickness. At a test concentration of 300 microM, the width of the necrotic band did not change when either the exposure time or the recovery period was varied between 30 min and 3 h.

View Article and Find Full Text PDF

The mechanisms underlying the neurodegenerative effects of the glutamate receptor agonist, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate), were studied using brain slice preparations of young rat (8 - 9 days old) cerebellum and hippocampus. Rapid AMPA toxicity (exerted on some cerebellar interneurons) was inhibited by including the appropriate receptor blocker, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, 10 microM), in the exposing solution. The degeneration of other neurons, including Purkinje cells and hippocampal pyramidal neurons, persisted.

View Article and Find Full Text PDF

Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA.

View Article and Find Full Text PDF