Publications by authors named "Gisselle Carvajal"

Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β). Epithelial mesenchymal transition (EMT) is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator.

View Article and Find Full Text PDF

Background/aims: Chronic kidney disease is characterized by accumulation of extracellular matrix in the tubulointerstitial area. Fibroblasts are the main matrix-producing cells. One source of activated fibroblasts is the epithelial mesenchymal transition (EMT).

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) is an important profibrotic factor in kidney diseases. Blockade of endogenous CTGF ameliorates experimental renal damage and inhibits synthesis of extracellular matrix in cultured renal cells. CTGF regulates several cellular responses, including adhesion, migration, proliferation, and synthesis of proinflammatory factors.

View Article and Find Full Text PDF

Epithelial to mesenchymal transdifferentiation is a novel mechanism that promotes renal fibrosis and here we investigated whether known causes of renal fibrosis (angiotensin II and transforming growth factor beta, TGFbeta) act through this pathway. We infused angiotensin II into rats for 1 day and found that it activated the Smad pathway which persisted for up to 2 weeks in chronically infused rats. Renal TGF-beta mRNA expression was increased at 3 days and its protein at 2 weeks suggesting Smad pathway activation occurred earlier than TGF-beta upregulation.

View Article and Find Full Text PDF

Connective tissue growth factor (CTGF) is overexpressed in kidney diseases associated with extracellular matrix accumulation. Angiotensin II (ANG II) participates in renal fibrosis by the upregulation of growth factors, including CTGF, and extracellular matrix proteins, such as type IV collagen. During renal injury, ANG II and the macrophage-produced cytokine interleukin-1beta (IL-1beta) may be present simultaneously in the glomerular environment.

View Article and Find Full Text PDF

3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process.

View Article and Find Full Text PDF

Background: Recent evidence in vitro and in vivo suggests that gremlin, a bone morphogenetic protein antagonist, is participating in tubular epithelial mesenchymal transition (EMT) in diabetic nephropathy as a downstream mediator of TGF-beta. Since EMT also occurs in parietal epithelial glomerular cells (PECs) leading to crescent formation, we hypothesized that gremlin could participate in this process. With this aim we studied its expression in 30 renal biopsies of patients with pauci-immune crescentic nephritis.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) participates in the pathogenesis of multiple cardiovascular diseases, including hypertension, restenosis, atherosclerosis, cardiac hypertrophy and heart failure. TGF-beta exerts pleiotropic effects on cardiovascular cells, regulating cell growth, fibrosis and inflammation. TGF-beta has long been believed to be the most important extracellular matrix regulator.

View Article and Find Full Text PDF

Purpose Of Review: We will focus on the recent findings concerning the inflammatory response in vascular and renal tissues caused by hypertension.

Recent Findings: Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process.

View Article and Find Full Text PDF