The first symptom of aluminum (Al) toxicity is the inhibition of root growth, which has been associated with low leaf hydration, with negative consequences for leaf gas exchange including stomatal conductance (gs) observed in many plant species. Here we asked whether low leaf hydration occurs before or after the inhibition of root growth of Citrus × limonia Osbeck ('Mandarin' lime) cultivated for 60 days in nutrient solution with 0 and 1480 μM Al. The length, diameter, surface area and biomass of roots of plants exposed to Al were lower than control plants only at 30 days after treatments (DAT).
View Article and Find Full Text PDFStyrax camporum Pohl. (Styracaceae) is a woody species that grows on acidic soils from the Brazilian savanna with high aluminum (Al) saturation (m% > 50%), where it accumulates ~ 1500 mg Al per kg dry leaves. Using nutrient solution, a previous study showed that 1480 μM Al causes toxicity symptoms, which raises the question whether less than 1480 μM Al could cause beneficial effects on this species.
View Article and Find Full Text PDFIn acidic soils, aluminium (Al) occurs as Al3+, which is phytotoxic. One of the most conspicuous symptoms of Al toxicity is the root growth inhibition, which can lead to low water uptake and consequent reduction in leaf hydration and gas exchange. However, fibrous xylem vessels have been observed in roots of 'Rangpur' lime plants (Citrus limonia L.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries.
View Article and Find Full Text PDF