Objectives: To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm.
Materials And Methods: Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval.
Radiomics is a new emerging field that includes extraction of metrics and quantification of so-called radiomic features from medical images. The growing importance of radiomics applied to oncology in improving diagnosis, cancer staging and grading, and improved personalized treatment, has been well established; yet, this new analysis technique has still few applications in cardiovascular imaging. Several studies have shown promising results describing how radiomics principles could improve the diagnostic accuracy of coronary computed tomography angiography (CCTA) and magnetic resonance imaging (MRI) in diagnosis, risk stratification, and follow-up of patients with coronary heart disease (CAD), ischemic heart disease (IHD), hypertrophic cardiomyopathy (HCM), hypertensive heart disease (HHD), and many other cardiovascular diseases.
View Article and Find Full Text PDFPurpose: To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V).
Material And Methods: Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR_L, DLIR_M, and DLIR_H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP).
J Comput Assist Tomogr
March 2023
Image reconstruction processing in computed tomography (CT) has evolved tremendously since its creation, succeeding at optimizing radiation dose while maintaining adequate image quality. Computed tomography vendors have developed and implemented various technical advances, such as automatic noise reduction filters, automatic exposure control, and refined imaging reconstruction algorithms.Focusing on imaging reconstruction, filtered back-projection has represented the standard reconstruction algorithm for over 3 decades, obtaining adequate image quality at standard radiation dose exposures.
View Article and Find Full Text PDFDiffuse liver diseases are highly prevalent conditions around the world, including pathological liver changes that occur when hepatocytes are damaged and liver function declines, often leading to a chronic condition. In the last years, Magnetic Resonance Imaging (MRI) is reaching an important role in the study of diffuse liver diseases moving from qualitative to quantitative assessment of liver parenchyma. In fact, this can allow noninvasive accurate and standardized assessment of diffuse liver diseases and can represent a concrete alternative to biopsy which represents the current reference standard.
View Article and Find Full Text PDFDiagnostics (Basel)
September 2022
Adrenal lesions are frequently incidentally diagnosed during investigations for other clinical conditions. Despite being usually benign, nonfunctioning, and silent, they can occasionally cause discomfort or be responsible for various clinical conditions due to hormonal dysregulation; therefore, their characterization is of paramount importance for establishing the best therapeutic strategy. Imaging techniques such as ultrasound, computed tomography, magnetic resonance, and PET-TC, providing anatomical and functional information, play a central role in the diagnostic workup, allowing clinicians and surgeons to choose the optimal lesion management.
View Article and Find Full Text PDFPurpose: To compare liver MRI with AIR Recon Deep Learning™(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAÏVE) sequences, in terms of quantitative and qualitative image analysis and scanning time.
Material And Methods: This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 ± 20 years) from September to November 2021.
In many low-income countries, the poor availability of lung biopsy leads to delayed diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential predictive role of clinical parameters, from March 2020 to September 2021, patients with histological diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion artefacts.
View Article and Find Full Text PDFPurpose: Lung severity score (LSS) and quantitative chest CT (QCCT) analysis could have a relevant impact to stratify patients affected by COVID-19 pneumonia at the hospital admission. The study aims to assess LSS and QCCT performances in severity stratification of COVID-19 patients.
Materials And Methods: From April 19, 2020, until May 3, 2020, patients with chest CT suggestive for interstitial pneumonia and tested positive for COVID-19 were retrospectively enrolled and stratified for hospital admission as Group 1, 2 and 3 (home isolation, low intensive care and intensive care, respectively).
Coronavirus disease 2019 (COVID-19) is a respiratory syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first described in Wuhan, Hubei Province, China in the last months of 2019 and then declared as a pandemic. Typical symptoms are represented by fever, cough, dyspnea and fatigue, but SARS-CoV-2 infection can also cause gastrointestinal symptoms (vomiting, diarrhoea, abdominal pain, loss of appetite) or be totally asymptomatic. As reported in literature, many patients with COVID-19 pneumonia had a secondary abdominal involvement (bowel, pancreas, gallbladder, spleen, liver, kidneys), confirmed by laboratory tests and also by radiological features.
View Article and Find Full Text PDFBackground The long-term post-acute pulmonary sequelae of COVID-19 remain unknown. Purpose To evaluate lung injury in patients affected by COVID-19 pneumonia at the 6-month follow-up CT examination compared with the baseline chest CT examination. Materials and Methods From March 19, 2020, to May 24, 2020, patients with moderate to severe COVID-19 pneumonia who had undergone baseline chest CT were prospectively enrolled at their 6-month follow-up.
View Article and Find Full Text PDFIterative reconstructions (IR) might alter radiomic features extraction. We aim to evaluate the influence of Adaptive Statistical Iterative Reconstruction-V (ASIR-V) on CT radiomic features. Patients who underwent unenhanced abdominal CT (Revolution Evo, GE Healthcare, USA) were retrospectively enrolled.
View Article and Find Full Text PDFRadiomics has the potential to play a pivotal role in oncological translational imaging, particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date, several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable data, extracted from medical images could be combined with clinical and survival parameters to develop models useful for the clinicians in cancer patients' assessment.
View Article and Find Full Text PDFRadiomics has been playing a pivotal role in oncological translational imaging, particularly in cancer diagnosis, prediction prognosis, and therapy response assessment. Recently, promising results were achieved in management of cancer patients by extracting mineable high-dimensional data from medical images, supporting clinicians in decision-making process in the new era of target therapy and personalized medicine. Radiomics could provide quantitative data, extracted from medical images, that could reflect microenvironmental tumor heterogeneity, which might be a useful information for treatment tailoring.
View Article and Find Full Text PDFIntroduction: COVID-19 pneumonia is characterized by ground-glass opacities (GGOs) and consolidations on Chest CT, although these CT features cannot be considered specific, at least on a qualitative analysis. The aim is to evaluate if Quantitative Chest CT could provide reliable information in discriminating COVID-19 from non-COVID-19 patients.
Materials And Methods: From March 31, 2020 until April 18, 2020, patients with Chest CT suggestive for interstitial pneumonia were retrospectively enrolled and divided into two groups based on positive/negative COVID-19 RT-PCR results.
In December 2019 a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 was identified and the disease associated was named coronavirus disease 2019 (COVID-19). Fever, cough, myalgia, fatigue associated to dyspnea represent most common clinical symptoms of the disease. The reference standard for diagnosis of severe acute respiratory syndrome coronavirus 2 infection is real time reverse-transcription polymerase chain reaction test applied on respiratory tract specimens.
View Article and Find Full Text PDFBackground The standard for diagnosis of severe acute respiratory syndrome coronavirus 2 is a reverse transcription polymerase chain reaction (RT-PCR) test, but chest CT may play a complimentary role in the early detection of Coronavirus Disease 2019 (COVID-19) pneumonia. Purpose To investigate CT features of patients with COVID-19 in Rome, Italy, and to compare the accuracy of CT with that of RT-PCR. Materials and Methods In this prospective study from March 4, 2020, until March 19, 2020, consecutive patients suspected of having COVID-19 infection and respiratory symptoms were enrolled.
View Article and Find Full Text PDF