Crotoxin, a phospholipase A (PLA) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications.
View Article and Find Full Text PDFAnimal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years.
View Article and Find Full Text PDFA pioneering study regarding the isolation, biochemical evaluation, functional assays and first PEGylation report of a novel vascular endothelial growth factor from venom (VEGF and PEG-VEGF). VEGF was isolated from crude venom using two different chromatographic steps, representing 2% of soluble venom proteins. Its primary sequence was determined using mass spectrometry analysis, and the molecule demonstrated no affinity to heparin.
View Article and Find Full Text PDFPhosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction.
View Article and Find Full Text PDFVascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF).
View Article and Find Full Text PDFBothrops leucurus is considered as a snake of medical interest in the State of Bahia, Brazil. However, so far, there are no studies that provide a refined mapping of the composition of this venom. The aim of this work was to better understand the protein composition of B.
View Article and Find Full Text PDFThis study reports the isolation, structural, biochemical, and functional characterization of a novel phosphodiesterase from Crotalus durissus collilineatus venom (CdcPDE). CdcPDE was successfully isolated from whole venom using three chromatographic steps and represented 0.7% of total protein content.
View Article and Find Full Text PDFScorpionism is responsible for most accidents involving venomous animals in Brazil, which leads to severe symptoms that can evolve to death. Scorpion venoms consist of complexes cocktails, including peptides, proteins, and non-protein compounds, making separation and purification procedures extremely difficult and time-consuming. Scorpion toxins target different biological systems and can be used in basic science, for clinical, and biotechnological applications.
View Article and Find Full Text PDFAnimal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
April 2019
Background: is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A and bradykinin-potentiating peptides. Based on a previously reported fractionation of venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom.
View Article and Find Full Text PDFSnake venom L-amino acid oxidases (svLAAOs) are an interesting class of enzymes with important biological activities. Their participation in key metabolic processes, including pathological disorders, suggest that svLAAOs are potential lead compounds in drug discovery. However, their short-term stability defies their applications.
View Article and Find Full Text PDFBackground: Animal poisons and venoms are sources of biomolecules naturally selected. toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads' secretion has gaining attention.
View Article and Find Full Text PDFBackground: (Lmr) is the largest venomous snake in Latin America and its venom contains mainly enzymatic components, such as serine and metalloproteases, L-amino acid oxidase and phospholipases A. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation.
View Article and Find Full Text PDFSnake venoms are complex mixtures mainly composed of proteins and small peptides. Crotoxin is one of the most studied components from Crotalus venoms, but many other components are less known due to their low abundance. The venome of Crotalus durissus terrificus, the most lethal Brazilian snake, was investigated by combining its venom gland transcriptome and proteome to create a holistic database of venom compounds unraveling novel toxins.
View Article and Find Full Text PDFSnake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
October 2015
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.
View Article and Find Full Text PDFHyaluronidases contribute to local and systemic damages after envenoming, since they act as spreading factors cleaving the hyaluronan presents in the connective tissues of the victim, facilitating the diffusion of venom components. Although hyaluronidases are ubiquitous in snake venoms, they still have not been detected in transcriptomic analysis of the Lachesis venom gland and neither in the proteome of its venom performed previously. This work purified a hyaluronidase from Lachesis muta rhombeata venom whose molecular mass was estimated by SDS-PAGE to be 60 kDa.
View Article and Find Full Text PDFBackground: Crotalus durissus terrificus venom (CdtV) is one of the most studied snake venoms in Brazil. Despite presenting several well known proteins, its L-amino acid oxidase (LAAO) has not been studied previously. This study aimed to isolate, characterize and evaluate the enzyme stability of bordonein-L, an LAAO from CdtV.
View Article and Find Full Text PDF