Mol Biochem Parasitol
April 2018
In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X-C-X-C-X-H (CCCH) motif.
View Article and Find Full Text PDFChagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of individuals around the world. Although it has been known for more than a century, the study of T. cruzi has been a challenge, particularly due to the scarcity of tools for genome inquiries.
View Article and Find Full Text PDFChagas disease, caused by Trypanosoma cruzi, still affects millions of people around the world. No vaccines nor treatment for chronic Chagas disease are available, and chemotherapy for the acute phase is hindered by limited efficacy and severe side effects. The processes by which the parasite acquires infectivity and survives in different hosts involve tight regulation of gene expression, mainly post-transcriptionally.
View Article and Find Full Text PDFGene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction.
View Article and Find Full Text PDFThe nuclear lamina is a structure that lines the inner nuclear membrane. In metazoans, lamins are the primary structural components of the nuclear lamina and are involved in several processes. Eukaryotes that lack lamins have distinct proteins with homologous functions.
View Article and Find Full Text PDFWe studied the enrichment and distribution of the histone variant mH2A1 in the condensed inactive X (Xi) chromosome. By using highly specific antibodies against mH2A1 and stable HEK 293 cell lines expressing either green fluorescent protein (GFP)-mH2A1 or GFP-H2A, we found that the Xi chromosome contains approximately 1.5-fold more mH2A1 than the autosomes.
View Article and Find Full Text PDFBlastocrithidia culicis and Crithidia deanei are trypanosomatids that harbor an endosymbiotic bacterium in their cytoplasm. In prokaryotes, numerous proteins are essential for cell division, such as FtsZ, which is encoded by filament-forming temperature-sensitive (fts) genes. FtsZ is the prokaryotic homolog of eukaryotic tubulin and is present in bacteria and archaea, and has also been identified in mitochondria and chloroplasts.
View Article and Find Full Text PDFWe have identified two zinc finger proteins of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans. These proteins, named tcZFP1 and tcZFP2, share the unusual zinc finger motif (CCCH) found in a diverse range of RNA-binding proteins involved in various aspects of the control of cell homeostasis and differentiation. We report here the functional expression of a recombinant tcZFP1, and the relative affinity and stability of the specific complexes formed between the protein and synthetic oligoribonucleotides containing C-rich sequences.
View Article and Find Full Text PDFTrypanosoma rangeli is an important hemoflagellate parasite of several mammalian species in Central and South America, sharing geographical areas, vectors and reservoirs with T. cruzi, the causative agent of Chagas disease. Thus, the occurrence of single and/or mixed infections, including in humans, must be expected and are of great importance for specific diagnosis and epidemiology.
View Article and Find Full Text PDF