Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%).
View Article and Find Full Text PDFThe organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, MR), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR + MR), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.
View Article and Find Full Text PDF