Publications by authors named "Gisele K Couto"

Objective: Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP.

View Article and Find Full Text PDF

Aims: Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown.

View Article and Find Full Text PDF

Aim: Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats.

Methods: Gonadectomy was performed in Wistar rats of both sexes.

View Article and Find Full Text PDF

Objective: To investigate the role of angiotensin II/AT 1 receptor signaling and/or cyclooxygenase-2 (COX-2) activation on vascular remodeling and stiffening of the mesenteric resistance arteries (MRA) of ouabain-treated rats.

Methods: Ouabain-treated (OUA, 30 μg kg/day for 5 weeks) and vehicle (VEH)-treated Wistar rats were co-treated with losartan (LOS, AT 1 R antagonist), nimesulide (NIM, COX-2 inhibitor) or hydralazine hydrochloride plus hydrochlorothiazide. MRA structure and mechanics were assessed with pressure myography and histology.

View Article and Find Full Text PDF

Arterial endothelial dysfunction has been extensively studied in heart failure (HF). However, little is known about the adjustments shown by the venous system in this condition. Considering that inferior vena cava (VC) tone could influence cardiac performance and HF prognosis, the aim of the present study was to assess the VC and thoracic aorta (TA) endothelial function of HF-post-myocardial infarction (MI) rats, comparing both endothelial responses and signaling pathways developed.

View Article and Find Full Text PDF

Aim: Previous studies raise cyclooxygenase (COX) activation as a possible mechanism involved in the pathophysiology of ouabain-induced hypertension. We hypothesized that inhibition of COX-2 activity might prevent ouabain-induced vascular dysfunction and worsening of hypertension in spontaneously hypertensive rats (SHR).

Methods: SHR were exposed to ouabain or vehicle and treated or not with the selective COX-2 inhibitor nimesulide for 5 weeks.

View Article and Find Full Text PDF

Perivascular adipose tissue (PVAT) dysfunction is associated with vascular damage in cardiometabolic diseases. Although heart failure (HF)-induced endothelial dysfunction is associated with renin-angiotensin system (RAS) activation, no data have correlated this syndrome with PVAT dysfunction. Thus, the aim of the present study was to investigate whether the hyperactivation of the RAS in PVAT participates in the vascular dysfunction observed in rats with HF after myocardial infarction surgery.

View Article and Find Full Text PDF

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats.

View Article and Find Full Text PDF

Purpose: The beneficial effects of exercise training on the cardiovascular system are well known. Because our knowledge of exercise-induced vascular function is still limited, we aimed to uncover the molecular mechanisms conditioning the improved vascular relaxation in muscular arteries.

Methods: Male Wistar-Kyoto rats with the same ability to run on a treadmill after maximal exercise tests were allocated to the following two groups: trained (Tr) (treadmill, 50%-60% of maximal capacity, 5 d·wk) and untrained (UnTr).

View Article and Find Full Text PDF

Impairment of the myogenic response can affect capillary hydrostatic pressure and contribute to peripheral edema and exercise intolerance, which are markers of heart failure (HF). The aim of this study was to assess the effects of exercise training (ET) on myogenic response in skeletal muscle resistance arteries and peripheral edema in HF rats, focusing on the potential signaling pathways involved in these adjustments. Male Wistar rats were submitted to either coronary artery occlusion or a sham-operated surgery.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) frequently coexists with congestive heart failure (CHF). The increased susceptibility to AF in CHF has been attributed to a variety of structural and electrophysiological changes in the atria, particularly dilation and interstitial fibrosis. We evaluated atrial remodeling and AF vulnerability in a rat model of CHF induced by left ventricle (LV) radiofrequency (RF) ablation.

View Article and Find Full Text PDF

Exercise training (ET) has emerged as a nonpharmacological therapy for cardiovascular diseases because of its helpful milieu for improving vascular function. The aim of the present study was to assess whether ET reverses the alterations in vascular reactivity observed in heart failure (HF)-related coronary arteries and to elucidate the molecular mechanisms involved in these adjustments. Male Wistar rats were subjected to either coronary artery ligation or sham operation.

View Article and Find Full Text PDF

Chronic angiotensin II (ANG II) infusion for 1 or 2 wk leads to progressive hypertension and induces inward hypertrophic remodeling in preglomerular vessels, which is associated with increased renal vascular resistance (RVR) and decreased glomerular perfusion. Considering the ability of preglomerular vessels to exhibit adaptive responses, the present study was performed to evaluate glomerular perfusion and renal function after 6 wk of ANG II infusion. To address this study, male Wistar rats were submitted to sham surgery (control) or osmotic minipump insertion (ANG II 200 ng·kg(-1)·min(-1), 42 days).

View Article and Find Full Text PDF

Aim: The endothelium, mainly via nitric oxide (NO) release, adjusts the coronary flow. Cardiac function is closely linked to blood flow; thus, we tested the hypothesis that NO modulation in coronary arteries could be differentially adjusted after myocardial infarction (MI) in the presence or absence of heart failure (HF).

Methods And Results: Four weeks after coronary occlusion, the infarcted rats were subdivided into rats without (MI) or with HF signs according to haemodynamic parameters.

View Article and Find Full Text PDF

Objective: Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS).

Methods: Female Wistar rats ovariectomized (OVX - n=20) or with intact ovary (SHAM - n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA).

View Article and Find Full Text PDF

NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown.

View Article and Find Full Text PDF

Aim: The purpose of this study was to compare the effect of long-term ouabain treatment on the vascular reactivity and Na+, K+-ATPase activity of a conductance artery from normotensive and hypertensive rats.

Methods: Male Wistar rats were treated with ouabain (~8.0 µg/day, subcutaneously) or vehicle for 5 and 20 weeks, and spontaneously hypertensive rats (SHRs) for 5 weeks.

View Article and Find Full Text PDF

Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle.

View Article and Find Full Text PDF

Knockout mice lacking both α2A- and α2C-adrenergic receptors (α2A/α2C-ARKO) provide a model for understanding the mechanisms underlying the deleterious effects of sympathetic hyperactivity on the cardiovascular system. Thus, in the present study we investigated the vascular reactivity of large and small arteries of α2A/α2C-ARKO mice. Aorta and mesenteric small arteries (MSAs) from 7-month-old male α2A/α2C-ARKO mice and congenic C57BL6/J mice (wild-type, WT) were studied.

View Article and Find Full Text PDF

Background: Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF.

View Article and Find Full Text PDF

Introduction: It has been shown that the innate immune system mediates acute lung inflammation triggered by intestinal trauma. Sexual dimorphism modulates the profile of TH1 and TH2 lymphocytes, and accordingly sex hormones may modulate acute lung inflammation by intestinal ischemia/reperfusion (I/R). Studies indicate that female rats are relatively resistant to organ injury caused by hemorrhagic shock and that the gut of female is more resistant than that of the male to deleterious effects of ischemic injury.

View Article and Find Full Text PDF

Objective: To study the effect of aerobic exercise training on sympathetic, nitrergic and sensory innervation function in superior mesenteric artery from spontaneously hypertensive rats (SHRs).

Methods: De-endothelized vascular rings from sedentary and trained SHRs (treadmill 12 weeks) were used. Vasomotor responses to electrical field stimulation (EFS), noradrenaline, nitric oxide donor DEA-NO and calcitonin gene-related peptide (CGRP) were studied.

View Article and Find Full Text PDF

Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness.

Methodology/principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB).

View Article and Find Full Text PDF

Objectives: The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old).

Methods: Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR + IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar-Kyoto rats (Y-WKY and A-WKY).

View Article and Find Full Text PDF